• 제목/요약/키워드: Flood forecasting and warning

검색결과 68건 처리시간 0.027초

Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보 (Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique)

  • 이재응;최창원
    • 한국수자원학회논문집
    • /
    • 제41권3호
    • /
    • pp.341-351
    • /
    • 2008
  • 최근 지구 온난화로 인한 이상기후의 영향으로 게릴라성 집중호우의 피해가 증가하고 있으므로 대하천뿐만 아니라 중 소하천에서도 홍수 예 경보의 중요성이 높아지고 있다. 기존의 홍수 예 경보 체계의 경우 유출량을 계산하는 전처리과정과 주 계산과정을 거치는 동안 많은 오차들이 발생하고, 누적되어 그 결과물(예측된 유출량) 속에 오차들이 내포되어 있다. 또한 유출모형의 적용에 필요한 매개변수들을 추정하기 위해서도 많은 실측자료가 필요하고, 많은 불확실성이 내재되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키기 위해 ANFIS(Adaptive Neuro-Fuzzy Inference) 기법을 사용하였다. ANFIS는 신경회로망 기법을 사용한 data driven 모형으로 기존의 물리적 모형의 구축과정에서 필수적이었던 방대한 양의 물리적 자료를 배제하고 유역의 강우자료와 수위자료만으로 모형을 구축하고 수위 예측을 실시할 수 있다. 입력자료로는 시계열 강우자료와 수위자료를 사용하였고, 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다. 탄천유역의 2003년부터 2005년까지의 강우사상을 이용하여 모형의 적용성과 타당성을 검토하였고, 2006년 실제 강우에 모형을 적용한 결과 실제 수위를 큰 오차 없이 모의할 수 있었다.

매개변수 추적에 의한 중.소하천의 실시간 홍수예측모형 (Real-time Flood Forecasting Model for the Medium and Small Watershed Using Recursive Parameter Optimization)

  • 문종필;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.295-299
    • /
    • 2001
  • To protect the flooding damages in Medium and Small watershed, it needs to set up flood warning system and develope Flood forecasting Model in real-time basis for medium and small watershed. In this study, it was able to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance by using simplex method recursively for the determination of the best parameters of RETFLO model. The result of RETFLO performance applied to several storm of Yugu river during 3 past years was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

유역토양수분 추적에 의한 실시간 홍수예측모형 (Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed)

  • 김태철;박승기;문종필
    • 한국농공학회지
    • /
    • 제37권5호
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF

Assessment of Flash Flood Forecasting based on SURR model using Predicted Radar Rainfall in the TaeHwa River Basin

  • Duong, Ngoc Tien;Heo, Jae-Yeong;Kim, Jeong-Bae;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.146-146
    • /
    • 2022
  • A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.

  • PDF

코호넨 자기조직화함수를 이용한 홍수위 예측 (Flood Stage Forecasting using Kohonen Self-Organizing Map)

  • 김성원;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1427-1431
    • /
    • 2007
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측 (Flood Stage Forecasting using Class Segregation Method of Time Series Data)

  • 김성원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

하천 수계의 홍수 예측을 위한 강우-유출 모형의 비교 (Comparison of the Rainfall-Runoff Models for Flood Forecasting in Watershed)

  • 심순보;박노혁
    • 물과 미래
    • /
    • 제29권6호
    • /
    • pp.237-247
    • /
    • 1996
  • 본 연구는 하천 수계에서의 홍수 유출 예측 정도를 높일 수 있는 방안을 도출하고자, 저류함수 모형과 NWS-PC모형을 선정하여 모형의 구조 및 특성을 분석하고 그 예측능력을 비교검토한 것이다. 저류함수 모형은 1974년도부터 우리나라에 도입되어 주요하천 홍수예경보 업무에 사용되어 왔으며, NWS-PC모형은 유역의 사면과 하도의 유출을 운동파로 모의하고 지표 또는 지하의 수문 과정도 토앙함수상태 계산 (SAC-SMA)을 통하여 모의하는 물리적 기반의 모형이다. 모형의 적용은 미호천 유역을 선정하였고, '85년-95년 동안의 홍수 자료를 이용하여 모형을 적용하고 곽측치에 대한 RMS오차와 첨두유량 및 총유출체적의 상대오차 등을 비교한 결과를 토대로 각각의 장단점 및 적용성을 밝히고, 개선방향 등을 제시하였다.

  • PDF

농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발 (Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN))

  • 배승종;배원길;배연정;김성필;김수진;서일환;서승원
    • 농촌계획
    • /
    • 제21권3호
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.