• Title/Summary/Keyword: Flood area

Search Result 1,171, Processing Time 0.031 seconds

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

Catchment Similarity Assessment Based on Catchment Characteristics of GIS in Geum River Catchments, Korea (금강 유역을 대상으로 한 GIS 기반의 유역의 유사성 평가)

  • Lee, Hyo Sang;Park, Ki Soon;Jung, Sung Heuk;Choi, Seuk Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.37-46
    • /
    • 2013
  • Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is not clearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum River catchments, Korea. Three Catchment Characteristics, Area(A)-Annual precipitation(SAAR)-SCS Curve Number(CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups (H1, H2 and H3) and the four catchments are not grouped in this study. The clustering analysis of FDC provides four Groups; F1, F2, F3 and F4. The six catchments (out of seven) of H1 are grouped in F1, while Sangyeogyo is grouped in F2. The four catchments (out of six) of H2 are also grouped in F2, while Cheongju and Guryong are grouped in F1. The catchments of H3 are categorized in F1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (F1 and F2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by clustering analysis of FDC. This study shows a potential of hydrological catchment similarity measures in Korea.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.

Integrated Approach for Watershed Management in an Urban Area (도시 유역 관리를 위한 통합적인 접근방법)

  • Lee, Kil-Seong;Chung, Eun-Sung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.161-178
    • /
    • 2006
  • Heathcote (1998) identified a systematic, seven-step approach to general watershed planning and management. It consists of 1) understanding watershed components and processes, 2) identifying and ranking problems to be solved, 3) setting clear and specific goals, 4) developing a list of management options, 5) eliminating infeasible options 6) testing the effectiveness of remaining feasible options, and 7) developing the final options. In this study the first five steps of that process were applied to the Anyangcheon watershed in Korea, which experiences streamflow depletion, frequent flood damages, and poor water quality typical of highly urbanized watersheds. This study employed four indices: Potential Flood Damage(PFD), Potential Streamflow Depletion(PSD), Potential Water Quality Deterioration(PWQD) and Watershed Evaluation Index(WEI) to identify and quantify problems within the watershed. WEI is the integration index of the others. Composite programming which is a method of multi-criteria decision making is applied for the calculation of PSD, PWQD and WEI (Step 2). The primary goal of the study is to secure instreamflow in the Anyangcheon during dry seasons. The second management goals of flood damage mitigation and water quality enhancement are also set (Step 3). Management options include not only structural measures that can alter the existing conditions, but also nonstructural measures that rely on changes in human behavior or management practices (Step 4). Certain management options which are not technically, economically, and environmentally feasible, are eliminated (Step S). Therefore, this study addresses a Pre-feasibility study, which established a master plan using Steps 1 through 5.

The Study on Flood Runoff Simulation using Runoff Model with Gauge-adjusted Radar data (보정 레이더 자료와 유출 모형을 이용한 홍수유출모의에 관한 연구)

  • Bae, Young-Hye;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, it is important to understand the spatial-temporal features of rainfall. In this study, RADAR rainfall was used to calculate gridded areal rainfall which reflects the spatial-temporal variability. In addition, Kalman-filter method, a stochastical technique, was used to combine ground rainfall network with RADAR rainfall network to calculate areal rainfall. Thiessen polygon method, Inverse distance weighting method, and Kriging method were used for calculating areal rainfall, and the calculated data was compared with adjusted areal RADAR rainfall measured using the Kalman-filter method. The result showed that RADAR rainfall adjusted with Kalman-filter method well-reproduced the distribution of raw RADAR rainfall which has a similar spatial distribution as the actual rainfall distribution. The adjusted RADAR rainfall also showed a similar rainfall volume as the volume shown in rain gauge data. Anseong-Cheon basin was used as a study area and the RADAR rainfall adjusted with Kalman-filter method was applied in $Vflo^{TM}$ model, a physical-based distributed model, and ModClark model, a semi-distributed model. As a result, $Vflo^{TM}$ model simulated peak time and peak value similar to that of observed hydrograph. ModClark model showed good results for total runoff volume. However, for verifying the parameter, $Vflo^{TM}$ model showed better reproduction of observed hydrograph than ModClark model. These results confirmed that flood runoff simulation is applicable in domestic settings(in South Korea) if highly accurate areal rainfall is calculated by combining gauge rainfall and RADAR rainfall data and the simulation is performed in link to the distributed hydrological model.

Application of X-band polarimetric radar observation for flood forecasting in Japan

  • Kim, Sun-Min;Yorozu, Kazuaki;Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • The radar observation system in Japan is operated by two governmental groups: Japan Meteorological Agency (JMA) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan. The JMA radar observation network is comprised of 20 C-band radars (with a wavelength of 5.6 cm), which cover most of the Japan Islands and observe rainfall intensity and distribution. And the MLIT's radar observation system is composed of 26 C-band radars throughout Japan. The observed radar echo from each radar unit is first modified, and then sent to the National Bureau of Synthesis Process within the MLIT. Through several steps for homogenizing observation accuracy, including distance and elevation correction, synthesized rainfall intensity maps for the entire nation of Japan are generated every 5 minutes. The MLIT has recently launched a new radar observation network system designed for flash flood observation and forecasting in small river basins within urban areas. It is called the X-band multi parameter radar network, and is distinguished by its dual polarimetric wave pulses of short length (3cm). Attenuation problems resulting from the short wave length of radar echo are strengthened by polarimetric wavelengths and very dense radar networks. Currently, the network is established within four areas. Each area is observed using 3-4 X-band radars with very fine resolution in spatial (250 m) and temporal (1 minute intervals). This study provides a series of utilization procedures for the new input data into a real-time forecasting system. First of all, the accuracy of the X-band radar observation was determined by comparing its results with the rainfall intensities as observed by ground gauge stations. It was also compared with conventional C-band radar observation. The rainfall information from the new radar network was then provided to a distributed hydrologic model to simulate river discharges. The simulated river discharges were evaluated again using the observed river discharge to estimate the applicability of the new observation network in the context of operations regarding flood forecasting. It was able to determine that the newly equipped X-band polarimetric radar network shows somewhat improved observation accuracy compared to conventional C-band radar observation. However, it has a tendency to underestimate the rainfall, and the accuracy is not always superior to that of the C-band radar. The accuracy evaluation of the X-band radar observation in this study was conducted using only limited rainfall events, and more cases should be examined for developing a broader understanding of the general behavior of the X-band radar and for improving observation accuracy.

  • PDF

Estimation of flood peak discharge using flood marks (홍수흔적을 이용한 첨두홍수량 추정)

  • Lee, Tae Hee;Lee, Jung Hoon;Kang, Jong Wan;Roh, Youngsin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.75-75
    • /
    • 2019
  • 첨두홍수량 자료는 홍수예경보 및 치수계획수립 등 하천관리에 있어서 매우 중요한 요소이다. 그러나 대규모 홍수가 발생 시 악천후가 동반된 기상상황이나, 현장 접근이 어려운 환경적 조건과 예산 및 인력 부족 등에 의한 불가피한 문제로 첨두홍수량을 측정하는데 어려움 있다. 따라서 일반적으로 수위-유량관계곡선식을 이용하여 첨두홍수량을 산정하지만 단순 고수위 외삽 추정을 통해 개발된 곡선식을 이용한 첨두홍수량 산정에 있어서는 주의가 필요하다. 이러한 경우 홍수가 지나간 후 현장조사를 통해 획득한 위치, 표고, 횡단면적 등 홍수흔적(flood marks)을 가지고 경사면적법(slope-area method)과 같은 간접적인 방법으로 첨두홍수량을 추정할 수 있다. 본 연구에서는 2018년 큰 호우사상이 발생한 내성천의 지류인 서천의 영주시(월호교) 지점과 남강의 산청군(하촌리) 지점에서 홍수흔적 조사를 통해 지점별 두 개의 단면을 선정하였다. 영주시(월호교) 지점의 두 단면 간 거리는 약 90m, 높이차는 약 0.21m로 조사되었고, 산청군(하촌리) 지점의 두 단면 간 거리는 약 330m, 높이차는 약 0.47m로 조사되었다. 경사면적법을 이용한 첨두 홍수량 추정에 적용된 조도계수는 '서천 하천기본계획(2014)', '남강 하천기본계획(2013)'에서 계획 홍수량 산정에 적용된 조도계수 0.029와 0.025를 적용하였다. 영주시(월호교) 지점은 2018년 9월 4일 발생한 호우사상의 첨두수위 5.59m에서 수위-유량관계곡선식을 이용하여 산정된 유량은 $1,127.8m^3/s$이고 경사면적법을 이용하여 추정된 유량은 $1,105.9m^3/s$로 약 -1.98%의 편차율이 발생하였다. 산청군(하촌리) 지점은 2018년 8월 26일 발생한 호우사상의 첨두수위 6.75m에서 수위-유량관계곡선식을 이용하여 산정된 유량은 $3,435.0m^3/s$이고 경사면적법을 이용하여 추정된 유량은 $3,233.3m^3/s$로 약 -6.24%의 편차율이 발생하였다. 경사면적법을 이용하여 추정된 첨두홍수량은 수위-유량관계곡선식을 이용하여 산정된 유량과 편차율이 지점별 ${\pm}10%$ 이내의 근사한 범위로 산정되었다. 따라서 경사면적법을 이용한 첨두홍수량 추정 방법의 적용에 있어서 적절한 것으로 판단된다.

  • PDF

The Proposal of Evaluation Method for Local Government Infrastructure Vulnerability Relating to Climate Change Driven Flood (기후변화에 따른 홍수에 대한 지자체 기반시설 취약성 평가 방법 제시)

  • Han, Woo Suk;Sim, Ou Bae;Lee, Byoung Jae;Yoo, Jae Hwan
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.25-37
    • /
    • 2012
  • This research proposes the direction for the assessment of local government infrastructure vulnerabilities relating to climate change driven flood and analyzes the assessment result. In this research, the local government infrastructures are evaluated by three indices such as exposure, infrastructure sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Climate change scenario(A1B) developed on National Institute of Environmental Research is used to calculate present and future(2020, 2050, 2100s) exposure. As the result of infrastructure vulnerability assessment on present, the infrastructures in Seoul, Northern Gyeonggi-do, Gangwon-do, coastal area of Gyeongsangnam-do are vulnerable to flooding. For future, although the spatial pattern of flooding vulnerable infrastructure are similar, the flooding vulnerabilities of infrastructure in Gyeonggido and Ganwon-do would be increased as close to 2100s. It is expected that this research can be utilized as the preliminary analysis for climate change adaptation in local government infrastructure because this research propose the method for the assessment of local government infrastructure vulnerability relating to climate change driven flood and the result such as a trend of infrastructure vulnerability to flooding and the level of contribution of each index and alternative variable.

Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information (기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성)

  • Lee, Jeonghoon;Lee, Okjeong;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.747-757
    • /
    • 2021
  • Quantification of extreme rainfall is very important in establishing a flood protection plan, and a general measure of extreme rainfall is expressed as an T-year return level. In this study, a method was proposed for quantifying spatial distribution and uncertainty of daily rainfall depths with various return periods using a hierarchical Bayesian model combined with climate and geographical information, and was applied to the Seoul-Incheon-Gyeonggi region. The annual maximum daily rainfall depth of six automated synoptic observing system weather stations of the Korea Meteorological Administration in the study area was fitted to the generalized extreme value distribution. The applicability and reliability of the proposed method were investigated by comparing daily rainfall quantiles for various return levels derived from the at-site frequency analysis and the regional frequency analysis based on the index flood method. The uncertainty of the regional frequency analysis based on the index flood method was found to be the greatest at all stations and all return levels, and it was confirmed that the reliability of the regional frequency analysis based on the hierarchical Bayesian model was the highest. The proposed method can be used to generate the rainfall quantile maps for various return levels in the Seoul-Incheon-Gyeonggi region and other regions with similar spatial sizes.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.