• Title/Summary/Keyword: Flood Management

Search Result 808, Processing Time 0.03 seconds

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

Development of Flood Risk Index using causal relationships of Flood Indicators (홍수지표의 인과관계를 이용한 홍수위험지수 개발)

  • Lim, Kwang Suop;Choi, Si Jung;Lee, Dong Ryul;Moon, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.61-70
    • /
    • 2010
  • This research presents a methodology to define and apply appropriate index that can measure the risk of regional flood damage. Pressure-State-Response structure has been used to develop the Flood Risk Index(FRI), which allows for a comparative analysis of flood risk assessment between different sub-basins. FRI is a rational assessment method available to improve disaster preparedness and the prevention of losses. The pressure and state index for flood at 117 sub-basins from the year 1980s until the t 10s showed proportional relations, but state index did not decrease even though response index increased. This shows that pressures for flood damage relatively exceed countermeasure for flood. Thus this means we need to strengthen design criteria for flood countermeasure in the future. The FRI is gradually going down in consequence of continuous flood control projects. Flood risk of Han River and Nakdong River area is relatively lower than that of Geum, Seumjin, and Youngsan River area.

Scenario Analysis Technology for Flood Risk Management in the Taihu Basin

  • Changwei, Hu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.140-148
    • /
    • 2010
  • The Taihu Basin is located in the east coast of China, where the threats of frequent floods have induced construction of massive, complex, hierarchical flood defense systems over the interconnected river networks. Digital modeling of flooding processes and quantitative damage assessment still remain challenging due to such complexity. The current research uses an integrated approach to meet this challenge by combining multiple types of models within a GIS platform. A new algorithm is introduced to simulate the impacts of the flood defense systems, especially the large number of polders, on floods distributions and damages.

  • PDF

The Development of a Flood Protection System for Pad Transformers Using Pneumatic Pressure in Areas Prone to Floods

  • Kim, Gi-Hyun;Lee, Jae-Yong;Bae, Suk-Myong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.27-32
    • /
    • 2010
  • The inundation of substation and ground power equipment breaks out every summer season in low-lying downtown areas and low-lying shores by torrential rain, typhoons and tsunamis. It has, in turn, caused replacement, social and economic costs for blackouts. For activity management regarding flood damage we produced a flood protection system which using the Pad transformer as a basic frame and is developed using pneumatic pressure. We tested safety concerns including insulation resistance and current leakage first for water tank flooding and, second, by an empirical test through supplying 22.9[kV]. We estimate that costs associated with flooding and power failure can be diminished by these advances toward creating a more reliable system.

Real-Time Flood Forecasting System For the Keum River Estuary Dam(I) -System Development- (금강하구둑 홍수예경보 시스템 개발(I) -시스템의 구성-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.79-87
    • /
    • 1994
  • A real-time flood forecasting system(FLOFS) was developed for the real-time and predictive determination of flood discharges and stages, and to aid in flood management decisions in the Keum River Estuary Dam. The system consists of three subsystems : data subsystem, model subsystem, and user subsystem. The data subsystem controls and manages data transmitted from telemetering systems and simulated by models. The model subsystem combines various techniques for rainfall-runoff modeling, tidal-level forecasting modeling, one-dimensional unsteady flood routing, Kalman filtering, and autoregressivemovingaverage(ARMA) modeling. The user subsystem in a menu-driven and man-machine interface system.

  • PDF

A Plan on the Flood Control Ability Improvement Project to maintain stability of existing dams (기존댐 치수능력 증대사업의 시행 방안)

  • Lee, Wan-Ho;Ahn, Hee-Bok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.191-201
    • /
    • 2006
  • The flood control ability improvement project on existing dams is the project for prevention of disasters from excessive flood due to climate changes and thus protects lives and property damages by increasing safety of dams. The collapse of dam brings unimaginable disasters, so the project needs to be swiftly conducted by Government's funding. This paper introduces tile examples of the flood control ability improvement projects of multi-purpose and water supply dams, which is conducted in the way of structural measures among 26 dams operated by Kwater.

  • PDF

Watershed Scale Flood Simulation in Upper Citarum Watershed, West Java-Indonesia using RRI Model

  • Nastiti, Kania Dewi;Kim, Yeonsu;Jung, Kwansue;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.179-179
    • /
    • 2015
  • Citarum River is one of the important river in West Java, Indonesia. During the rainy season, flood happens almost every year in Upper Citarum Watershed, hence, it is necessary to establish the countermeasure in order to prevent and mitigate flood damages. Since the lack of hydrological data for the modelling is common problem in this area, it is difficult to prepare the countermeasures. Therefore, we used Rainfall-Runoff-Inundation (RRI) Model developed by Sayama et al. (2010) as the hydrological and inundation modelling for evaluating the inundation case happened in Upper Citarum Watershed, West Java, Indonesia and the satellite based information such as rainfall (GSMaP), landuse and so on instead of the limited hydrological data. In addition, 3 arc-second HydroSHEDS Digital Elevation Model (DEM) is used. To verify the model, the observed data of Nanjung water stage gauging station and the daily observation data are used. Simulated inundation areas are compared with the flood extent figure from Upper Citarum Basin Flood Management Project (UCBFM).

  • PDF

Improvement of flood simulation accuracy based on the combination of hydraulic model and error correction model

  • Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.258-258
    • /
    • 2018
  • In this study, a hydraulic flow model and an error correction model are combined to improve the flood simulation accuracy. First, the hydraulic flow model is calibrated by optimizing the Manning's roughness coefficient that considers spatial and temporal variability. Then, an error correction model were used to correct the systematic errors of the calibrated hydraulic model. The error correction model is developed using Artificial Neural Networks (ANNs) that can estimate the systematic simulation errors of the hydraulic model by considering some state variables as inputs. The input variables are selected using parital mutual information (PMI) technique. It was found that the calibrated hydraulic model can simulate flood water levels with good accuracy. Then, the accuracy of estimated flood levels is improved further by using the error correction model. The method proposed in this study can be used to the flood control and water resources management as it can provide accurate water level eatimation.

  • PDF