• Title/Summary/Keyword: Flood Information

Search Result 757, Processing Time 0.067 seconds

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.

Detecting the HTTP-GET Flood Attacks Based on the Access Behavior of Inline Objects in a Web-page Using NetFlow Data

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.1-8
    • /
    • 2016
  • Nowadays, distributed denial of service (DDoS) attacks on web sites reward attackers financially or politically because our daily lifes tightly depends on web services such as on-line banking, e-mail, and e-commerce. One of DDoS attacks to web servers is called HTTP-GET flood attack which is becoming more serious. Most existing techniques are running on the application layer because these attack packets use legitimate network protocols and HTTP payloads; that is, network-level intrusion detection systems cannot distinguish legitimate HTTP-GET requests and malicious requests. In this paper, we propose a practical detection technique against HTTP-GET flood attacks, based on the access behavior of inline objects in a webpage using NetFlow data. In particular, our proposed scheme is working on the network layer without any application-specific deep packet inspections. We implement the proposed detection technique and evaluate the ability of attack detection on a simple test environment using NetBot attacker. Moreover, we also show that our approach must be applicable to real field by showing the test profile captured on a well-known e-commerce site. The results show that our technique can detect the HTTP-GET flood attack effectively.

Mobile Application Design for Farmland Flooding Prevention and Realtime Data Collection (농경지 침수 피해 감소와 실시간 자료 수집을 위한 모바일 기반 정보 시스템 설계)

  • Eun, Sang-Kyu;Kim, Tae-Gon;Lee, Ji-Min;Suh, Kyo;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2013
  • Climate change has increased the number of floods and inundation on farmland. Recently various mobile applications through inundation mapping, flood forecasts and evacuation routes have been developed for the prevention and reduction of flood damages. However, most of current prevention systems for farmland flooding are still web-based systems relying on the field survey which needs a lot of human and time resources although mobile devices has been rapidly improved and widely used. The purpose of this study is to design a mobile application for preventing and reducing farmland flood and inundation damages and collecting damage information in real time. We put advanced mobile device functions such as GPS, network communications, cameras into our system design. This system implement 2way communication and intuitive application that will increase information efficiency and decrease flood damage. Our design has been tested through previous flooding data of Jinju city in 2010.

Study of a Process for Flood Detention Location and Storage Capacity (재해저류지 위치결정과 용량결정 과정에 관한 연구)

  • Oh, Gun-Heung;Park, Ki-Bum;Chang, In-Soo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.601-609
    • /
    • 2008
  • In this study for the development of area due to the increasing of industry, population and spreading of urbanization is rapidly increasing but about seventy percent of our nation's areas consists of the mountainous districts. In such case, when those areas have the heavy rains break, they are washed away by a fast-flowing stream of a valley and overflowed. Thus it could result on human life and property damage and also the widespread of flood damage in the downstream area. To decrease those damage, the construction of flood control reservoir is necessary. This research was aim to construct the flood runoff models of a mountainous small district and to determine the probability rainfall by analyzing precipitation. The study also examined the effects of location and size of flood control reservoir on flood reduction. The result showed that the construction of detention basin was an effective way to ensure the safety of flood control and multiple detention basin had superior result for reducing amount of runoff in the down stream area than the single detention basin.

Effect of watershed characteristics on the criteria of Flash Flood warning (유역인자의 특성이 경계경보발령 기준에 미치는 영향분석)

  • 양인태;김재철;김태환
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.389-392
    • /
    • 2004
  • A recent unusual change in the weather is formed as a localized heavy rain in a short time. This phenomenon has caused a flash flood, and flash floods extensively have damaged human lives many times. In large river's case, the extent of loss of lives and properties has been decreased through the flood warning system by flood control stations of each stream. However, the extent of damage in other small rivers has increased reversely. Therefore, it is necessary to establish a new flood warning system against flash floods instead of the existing flood warning system. It is a specific character that the damage from flash floods in mountain streams brings much more loss of lives than large river's flood. The purpose of this study is calculating the characteristic of flash floods in streams, analyzing topographical characteristics of water basin through applying GIS techniques with the calculation as mentioned above and researching what topographical conditions have influence on hydrological flash floods in water basin. The flash flood prediction model we used is made by GIUH (geomorphoclimatic instantaneous unit hydrograph) with hydrologic-topographical technology. As applying the flash flood prediction model, this is a procedure for calculating topographical information in basin: we made a topological data up out of database with utilizing GIS, and we also produced a DEM (digital elevation model) and used it as a topographical data for determining amount of flash floods.

  • PDF

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

Development of Urban and River Flood Simulation Model Using FEM (유한요소법을 적용한 내수 및 외수 침수해석 모형 개발)

  • Nam, Myeong-Jun;Lee, Jae-Young;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.115-126
    • /
    • 2021
  • This study develops a simulation model that performs flood analysis considering both urban and river flood. For the analysis of river flood, this study considers river overflow by levee breach, and reflects the concept of the dual drainage systems for the analysis of urban flood. In relation to the surface flood analysis, FEM technique is applied to the flood diffusion analysis in order to conduct the flow analysis of urban and river flood simultaneously. For the verification of the model, it is first applied to the conceptual model, and then applied to the actual watershed. It is expected that this study will be able to reduce flood damage and to prepare effective countermeasures to reduce flood damage.

A Study of Survivable Alternate Routing Algorithm (생존성있는 대체 경로 라우팅 알고리즘 연구)

  • Park, Young-Chul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.535-539
    • /
    • 2007
  • We study an degree of alternativeness and a survivability of alternate routing algorithm in mobile ad-hoc tactical communication networks. The common channel signaling scheme is used and flood search routing algorithm is used for analysis. We also study a connectivity performance for flood search routing, restricted flooding and hybrid routing. From the results we expect low blocking probabilities with alternate routing and the conventional flood search routing shows better connectivity performance which results in high survivability.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Development of an Inventory-Based Flood Loss Estimation Method for Rural Areas (인벤토리 기반 농촌지역 홍수손실 평가기법 개발)

  • Kim, Sinae;Lee, Jonghyuk;Jun, Sang-Min;Choi, Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.65-78
    • /
    • 2023
  • In recent times, the frequency and intensity of natural disasters, such as heavy rains and typhoons, have been increasing due to the impacts of climate change. This has led to a rise in social and economic damages. Rural areas, in particular, possess limited disaster response capabilities due to their underdeveloped infrastructure and are highly vulnerable to flooding. Therefore, it is crucial to establish preventative and responsive measures. In this study, an Inventory-Based Flood Loss Estimation (IB-FLE) method utilizing high-resolution spatial information was developed for estimating flood-related losses in rural areas. Additionally, the developed approach was applied to a study area and compared with the Multidimensional Flood Damage Analysis (MD-FDA) method. Compared to the MD-FDA, the IB-FLE enables faster and more accurate estimation of flood damages and allows for the assessment of individual building and agricultural land losses using up-to-date information. The findings of this study are expected to contribute to the rational allocation of budgets for rural flood damage prevention and recovery, as well as enhancing disaster response capabilities.