• Title/Summary/Keyword: Flocculation-sedimentation

Search Result 62, Processing Time 0.025 seconds

A study on new treatment chemical for leather wastewater; I. Development of new organic coagulant (새로운 피혁폐수 처리제에 관한 연구; I. 새로운 유기 응결제의 개발)

  • Jung, Maeng-Joon;Lee, Chul-Jae;Han, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • As the interest in environmental pollution resulting from recent industrial development is converging, wastewater treatment problem of dying processing is one of important pending issue. Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. For flocculation and coagulation action chemical agents to add back, addition of chemical agents forms floc of could settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that improving organic matter and chromaticity of treated water of processing epochally using organic coagulant informed positive ion co-polymerization superior in color wastewater through this research.

  • PDF

A study on New Treatment Chemical for Leather Wastewater; III. COD Efficiency of Inorganic Coagulant (새로운 피혁폐수 처리제에 관한 연구; III. 무기 응집제의 COD 효율)

  • Park, Jung-Hoi;Lee, Chul-Jae;Choi, Hyun-Kuk;Jung, Maeng-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.107-111
    • /
    • 2008
  • Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. Flocculation and coagulation by addition of chemical agents forms floc settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that COD efficiency for wastewater by using inorganic coagulant.

  • PDF

Ensuring Stability in Accordance with the Secondary sedimentation tank Surface Loading rate Increase (장방향 이차침전지에서 이중정류벽 설치를 통한 침강속도 증대에 따른안정성 확보 분석)

  • Choi, Dongkyu;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • Improvement of the solid-liquid separation efficiency in the secondary sedimentation tank of the biological treatment process, is known to be increasing effectiveness of the overall system operation. Sewage treatment plant effluent SS is composed of most organic substances. In order to reduce the SS component in the secondary sedimentation tank discharge, fine SS components constituting the heterogeneous should be increased by its own aggregation (self flocculation), so that can be deleted through their precipitation. So, it is improved through using the installation of double rectification wall in this secondary tank. In case, sewage is rapidly increased due to the daily change of the influent water, it was confirmed that suspended solids caused by the impact load are processed stably. Therefore, there is a need for a facility installation which can be its own aggregation for reduction suspended solids in secondary sedimentation tank.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

An Experimental Study on Characteristics of Sedimentation of Dredged Soil (준설토의 침강특성에 관한 실험적연구)

  • Yoo, Nam-Jae;Lee, Jong-Ho;Jun, Sang-Hyun;Lee, Jong-yong
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.113-122
    • /
    • 2000
  • Column tests in the laboratory were preformed to investigate characteristics of settling process of dredged soil sampled from in-situ. Test results were analyzed by using the existing theories on discrete settling and hindered settling. From column tests of monitoring the interface with time, settling was found to be a linear process with time and the settling rate was increased with initial water content of slurry. The settling rate was also observed to decrease with increasing initial height of slurry. Most of settling process were composed of flocculation, hindered settling and self-weight consolidation. On the other hands, flocculation of soil during settling was observed and it was found that the size and density of flocculated particles could be analyzed by using the method proposed by Richardson and Zaki.

  • PDF

Flocculation Characteristics of Microalgae Using Chemical Flocculants (화학응집제를 이용한 미세조류의 응집 특성)

  • Kwon, Do-Yeon;Jung, Chang-Kyou;Park, Kwang-Beom;Lee, Choul-Gyun;Lee, Jin-Won
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • The aim of the study was to optimize harvesting method for concentrating microalgae from microalgae mass culture. It is well known that the mass density of microalgae is usually very low and these are small size (5-20 ${\mu}m$) in the culture medium. It is essential that microalgae is harvested and concentrated economically for economical biodiesel production from microalgae. In this study, to determine optimized conditions for microalgae harvesting by chemical flocculation. Flocculation of three algae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, was performed using various chemical flocculants, such as inorganic flocculants (aluminium sulfate, aluminium potassium sulfate, ferrous sulfate, ferric sulfate, ferric chloride, calcium hydroxide, sodium carbonate, sodium nitrite, and sodium aluminate), organic flocculant (polyacrylamide), and biopolymer flocculants (chitosan and starch). The results indicated that aluminium based inorganic flocculants is suitable for microalgae harvesting such as Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta. The results also recommended that flocculant doses, agitation speed, agitation time, sedimentation time for economical microalgae harvesting method using chemical flocculants.

Application of extracellular polymeric substances (EPSs)-bioflocculant for recovery of microalgae (미세조류 분리/회수를 위한 세포외 고분자물질 생물 응집제 활용)

  • Choi, Ohkyung;Dong, Dandan;Kim, Jongrack;Maeng, Sung Kyu;Kim, Keugtae;Lee, Jae Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • Microalgae are primary producers of aquatic ecosystems, securing biodiversity and health of the ecosystem and contributing to reducing the impact of climate change through carbon dioxide fixation. Also, they are useful biomass that can be used as biological resources for producing valuable industrial products. However, harvesting process, which is the separation of microalgal biomass from mixed liquor, is an important bottleneck in use of valorization of microalgae as a bioresource accounting for 20 to 30% of the total production cost. This study investigates the applicability of sewage sludge-derived extracellular polymeric substance (EPS) as bioflucculant for harvesting microalgae. We compared the flocculation characteristics of microalgae using EPSs extracted from sewage sludge by three methods. The flocculation efficiency of microalgae is closely related to the carbohydrate and protein concentrations of EPS. Heat-extracted EPS contains the highest carbohydrate and protein concentrations and can be a best-suited bioflocculant for microalgae recovery with 87.2% flocculation efficiency. Injection of bioflocculant improved the flocculation efficiency of all three different algal strains, Chlorella Vulgaris, Chlamydomonas Asymmetrica, Scenedesmus sp., however the improvement was more significant when it was used for flocculation of Chlamydomonas Asymmetrica with flagella.

Stability and Sedimentation Properties of TiO2 Nanoparticles (TiO2 나노 분말의 분산 안정성 및 침강 특성)

  • Woo S.H.;Lee M.K.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.263-268
    • /
    • 2006
  • In this study, the colloidal stability and sedimentation behavior of crystalline $TiO_2$ particles (300nm) in various organic solvents have been investigated by means of a backscattered light flux profile (Turbiscan). The backscattered light flux profiles revealed that the $TiO_2$ nanoparticles were readily sedimented in water, methyl alcohol, and ethyl alcohol due to a flocculation-induced particle growth, while a particle coalescence and a sedimentation of the $TiO_2$ nanoparticles were hardly observed in isopropyl alcohol. The migration velocities of the $TiO_2$ particle were measured as around 6.15/min, 12.53 m/min, 6.51m/min, and 0.18m/min for water, methyl alcohol, ethyl alcohol, and isopropyl alcohol, respectively, showing a remarkably slow migration of the $TiO_2$ particles in isopropyl alcohol.