• Title/Summary/Keyword: Flocculation strength

Search Result 34, Processing Time 0.022 seconds

Performance of Fixing Agents in Controlling Micro-Stickies in Recycled Newsprint Pulp

  • Wang, Li-Jun;Chen, Fu-Shan;Zhou, Lin-Jie
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.111-116
    • /
    • 2006
  • The microstickes control effects of some fixing agents, including an inorganic PAC, an organic polyamine (PA) and polydiallydimethyl ammonium chloride (Pdadmac), and a high cationic starch (HCS), were investigated, together with their effects on wet end performances and physical properties of handsheets. Despite that the HCS and Pdadmac had lower cationic charge densities than the PA and PAC (the HCS being even lower), they gave higher zeta potentials to fibers, and lower turbidities, cationic demands and residual COD contents to the pulp liquid phases than the PA and PAC did. In all cases, the HCS showed even better effects than the Pdadmac. In addition, drainage speed was also much higher by the HCS treatments although paper formation was worsened. All the phenomena showed that the HCS can fix more dissolved and colloidal substances to cellulose fibers, indicating that the HCS functioned mainly with flocculation and even hydrogen bonding mechanisms. Data on optical properties further indicated that the HCS interacted preferentially with colloidal substances, since it fixed more 'dirty' microstickes to fibers which decreased more sheet brightness while increasing more sheet opacity (with both higher light absorption and scattering coefficients). Interestingly, the organic fixing agents did not decrease tensile, tearing, and folding strengths of paper sheets made from 100% recycled newsprint pulp, except when they were dosed in high amounts. On the contrary, the inorganic PAC had more serious negative effects on the strength properties, especially on folding endurance. The study suggested that proper use of the HCS can lead to better microstickies control effects than traditional agents and methods.

  • PDF

Synthesis of modified polyacrylamides and their applications for the retention system of papermaking (변성 폴리아크릴 아미드의 합성 및 제지공정의 보류시스템에 응용)

  • Son, Dong-Jin;Yoon, Ji-Hyun;Choi, Eun-Jeong;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.04a
    • /
    • pp.23-28
    • /
    • 2009
  • The purpose of this study was to improve not only wet-end performances but also paper characteristics by the modification of various factors like molecular design and ionic characteristics of polyacrylamides First of all physical characteristics were observed after modify molecular design of the cationic polyacrylamides to linear, branched and cross-linked. In addition it was found analysis method to confirm branch degree of cationic polyacrylamides to combine ionic titration characteristics and spectroscopic behavior, After application of these structure modified polyacrylamides to the multiple retention systems with inorganic microparticles, it was found adjusting of branch degree of polyacrylamides was very important to optimize wet-end improvement. Second, After polymerization of amphoteric polyacrylamide to have both of cationic and anionic functional group in the polymer, we observed not only physical characteristics but also wet-end improvement to apply recycled pulp and found that the improvement of solution stability to prevent hydrolysis and increase of ash retention dramatically to compare traditional cationic polyacrylamide retention aid, Finally, After polymerization of anionic polyacrylamide, we observed not only wet-end improvement but also paper characteristics to apply preflocculation of PCC and it was found the improvements of flocculation efficiency, retention, ash retention, optical properties of the paper and bursting strength to compare traditional preflocculant of cationic polyacrylamide.

  • PDF

Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment (Copper Phthalocyanine Pigment의 분산을 위한 (2-Dimethylamino)ethyl Methacrylate와 Oligo(ethylene oxide)methyl Ether Methacrylate를 포함하는 잘 규정된 블록 공중합체형 분산제의 원자 이동 라디칼 중합을 이용한 합성)

  • Kim, Eun-Hee;Kim, Bong-Soo;Jung, Ki-Suk;Kim, Jin-Goo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • The dispersion of pigment particles is important because it is capable of increasing the color strength, contrast, and transmittance of color-LCD products. Pigment dispersion properties are very important factors for the quality of LCD color filters. The chemical structure of polymeric dispersants for pigment is important to improve dispersion stability and prevent aggregation or flocculation of pigment in organic or aqueous systems. Polymeric dispersants should contain both anchoring group that interacts with pigment surface and stabilizing group that provides steric stabilization. Moreover, the molecular weight and composition of block copolymer have the an effect on pigment dispersion. In this study, adequate dispersants, block copolymers containing (2-dimethylamino)ethyl methacrylate as anchoring group and oligo(ethylene oxide)methyl ether methacrylate as a stabilizing group were designed and synthesized by atom transfer radical polymerization in order to prepare well-defined structure, molecular weight and composition.

Removal of Suspended Solids in Aquacultural Recirculating Water by Magnetic Fluid Separation (자성 유체분리에 의한 양어장 순환수내 부유 고형물의 제거)

  • KIM Yong-Ha;YEO Ryoung-Mo;SUH Kuen-Hack;KIM Hang-Goo;CHUNG Uoo-Chang;KIM Soon-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.649-653
    • /
    • 1999
  • A magnetic fluid separation technology was confirmed to be very effective to remove the suspended solids (SS) from aquacultural recirculating water, In this study, the effects of operating variables on the characteristics of SS removal were investigated through the test runs using magnetite of 2 $\mu$m mean diameter as magnetic powder. Magnetic flocculation here formed by adsorbing fine magnetites on the surface of suspended solid was observed. The strength of magnet was of significance in determining the SS removal efficiency as well as the capacity of the equipment. In addition, the SS removal efficiency decreased with an increase in the superficial liquid velocity, but the effect became negligible when the mass ratio of magnetite to the suspended solids was higher than 1.0.

  • PDF