• 제목/요약/키워드: Flocculation strength

검색결과 34건 처리시간 0.019초

양이온성 고분자 첨가에 따른 섬유의 응집 및 종이 물성 변화 (Fibers Flocculation and Physical Properties Changes of Paper Depending on Cationic Polymer Addition)

  • 윤두훈;박종문
    • 펄프종이기술
    • /
    • 제37권1호
    • /
    • pp.10-16
    • /
    • 2005
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing cationic polymers for flocculation mechanism analysis. Flocculation of stock and physical strength of paper were similar when using branched PAM and linear PAM with fillers and microparticles Flocculation and physical strength were also similar when using branched PAM and linear PAM and microparticles without fillers. In that case excessive flocculation was not produced, so formation was improved but physical strength was decreased. When using branched PAM instead of linear PAM with filler addition, drainage time was decreased, air permeability was improved, and physical strength was increased.

생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구 (Investigation on Flocculi-floc Interaction and Flocculation in Extracellular Polymeric Substances, Ionic Species and Clay-containing Suspension)

  • 김재인;이병준
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.185-193
    • /
    • 2020
  • Bimodal flocculation describes the aggregation and breakage processes of the flocculi (or primary particles) and the flocs in the water environment. Bimodal flocculation causes bimodal size distribution with the two separate peaks of the flocculi and the flocs. Extracellular polymeric substances and ionic species common in the water environment increase the occurrence of bimodal flocculation and flocculi-floc size distribution, under the flocculation mechanisms of electrostatic attraction and polymeric bridging. This study investigated bimodal flocculation and flocculi-floc size distribution, with respect to the extracellular polymeric substance concentration and ionic strength in the kaolinite-containing suspension. The batch flocculation tests comprising 0.12 g/L of kaolinite showed that the highest flocculation potential occurred at the lowest xanthan gum (as extracellular polymeric substances) concentration, under all the ionic strengths of 0.001, 0.01, and 0.1 M NaCl. Also, it was important to note that the higher ionic strength resulted in the higher flocculation potential, at all the xanthan gum concentrations. The bimodal flocculation and flocculi-floc size distribution became apparent in the experimental conditions, which had low and intermediate flocculation potential. Besides the polymeric bridging flocculation, steric stabilization increased the flocculi mass fraction against the floc mass fraction, thereby developing the bimodal size distribution.

Flocculation and Formation - the Action and Effect

  • Lee, Sang-Gil;Lee, Hak-Lae;Youn, Hye-Jung;Jeong, Young-Bin
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.427-431
    • /
    • 2006
  • Formation which is one of the most fundamental characteristic of paper quality is affected by a number of variables. Fiber flocculation in the headbox has been recognized as the most important variable influencing formation. Consistency and crowding number of headbox stock are known to represent the flocculation potential of stocks. The effects of consistency and crowding number on paper formation were studied by measuring the flocculation of fiber suspensions. Increasing consistency increased the degree of fiber flocculation. Especially the consistency of long fiber fraction was the most crucial factor of flocculation. Tensile strength of handsheets was furnish dependent rather than flocculation dependent. Crowding number of a furnish can be used for the characterization of stock flocculation.

  • PDF

정수장 플록형성지의 수리학적 특성과 교반강도가 플록형성 효율에 미치는 영향 (Effect of Hydraulic Property and Mixing Intensity of Flocculation Basin on Flocculation Efficiency in Water Treatment Plant)

  • 정용준;민경석
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.230-235
    • /
    • 2005
  • The main purpose of the flocculation process is to make flocs bigger to be removed easily in the following processes. The flow pattern and mixing intensity have a great influence on flocculation. In this study, the flow pattern was examined by a hydraulic tracer-test, where 3 water treatment plants having $800,000m^3/d$, $44,000m^3/d$ and $40,000m^3/d$ were employed. Also, the settling test was conducted to find out the relationship between the mixing intensity and the settling ability of flocs. The hydraulic tracer-test was conducted for the various flocculation processes that have different structures of flocculation basins. In the result, the retention time distribution (RTD) curves for the flocculation processes were quite different. In case of the inappropriate structure of the flocculation basin, the flow is not even so that the floc does not grow enough. To find out the relationship between mixing intensity and settleability of flocs, G-values were calculated and the settling test was conducted for two flocculation basins which have the same conditions except the G-value. For the flocculation basin with uneven G-value, the floc settleability was revealed poor. On the other hand, the flocculation basin with even G-value, the settleability was better than the previous one. From these experimental results, it is confirmed that the flow pattern is closely related to the structure of the flocculation basin and the settleability is affected by mixing intensity. Therefore the flow pattern and the strength of the mixing intensity should be examined sufficiently to design and operate flocculation basin.

The Effect of Consistency and Crowding Number on the Formation of Paper Made of Different Pulp Stocks

  • Lee, Hak-Lae;Youn, Hye-Jung;Lee, Sang-Gil;Jeong, Young-Bin
    • 펄프종이기술
    • /
    • 제39권5호
    • /
    • pp.1-6
    • /
    • 2007
  • Formation which is one of the most fundamental characteristic of paper quality is affected by a number of variables. Fiber flocculation in the headbox has been recognized as the most important variable influencing formation. Consistency and crowding number of head box stock are known to represent the flocculation potential of stocks. The effects of consistency and crowding number on paper formation were studied by measuring the flocculation of fiber suspensions. Increasing consistency increased the degree of fiber flocculation. Especially the consistency of long fiber fraction was the most crucial factor of flocculation. Tensile strength of handsheets was furnish dependent rather than flocculation dependent. Crowding number of a furnish can be used for the characterization of stock flocculation.

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

마이크로파티클 보류 기작에 따른 섬유의 응집 및 종이 물성 변화 (Fibers Flocculation and Physical Properties Changes of Paper Depending on Microparticle Retention Mechanisms)

  • 윤두훈;박종문
    • 펄프종이기술
    • /
    • 제36권4호
    • /
    • pp.25-32
    • /
    • 2004
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing microparticles for flocculation mechanism analysis. When fillers were not added, formation and strength were deteriorated by 100, 300, or 500 ppm of linear PAM (all L-PAM), All L-PAM + 1200 ppm inorganic microparticle (1200-IM), all L-PAM + 120 ppm organic microparticle (120-OM), all L-PAM + 1200 ppm organic microparticle (1200-OM) because of too much flocculation. When 5, 15, $25\%$ (od.w/w) fillers were added, retention and drainage process were not affected by the extent flocculation when 500 ppm L - PAM, 500 ppm L - PAM + 1200- IM, and 500 ppm L - PAM + 120 ppm OM were added.

고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구 (Stability of Pre-treated Fillers for High Loaded Printing Paper)

  • 서영범;최진성;지성길
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 인쇄용지에 탄산칼슘을 많이 넣을수록, 즉 고충전 인쇄용지를 만들수록 펄프섬유의 사용량이 줄어들고, 건조비용이 감소함으로 생산비는 절감되며, 온실가스의 배출량도 적어지게 된다. 현재까지 고충전 인쇄용지는 주로 중질탄산칼슘(GCC. ground calcium carbonate)에 기능성고분자를 첨가하여 적절한 크기로 선응집(pre-flocculation)시켜 사용함으로서 기존의 인쇄용지 제조방법에 비해 고충전시에도 인쇄용지의 중요한 특성들인 인장강도의 저하를 줄이고, 평활도를 유지시켜왔다. 하지만 GCC의 선응집체는 만들어진 후 사용하기까지 시간이 지체되면 그 크기와 성질이 변하는 불안정성을 보였다. 본 연구에서는 GCC의 선응집기술을 개량하여 선응집된 GCC사이에 탄산칼슘을 화학적으로 새로 생성시켜 GCC간에 연결을 시도하였으며, 그 결과 안정성이 높은 선응집체가 형성되었고, 이를 HCC (hybrid calcium carbonate)로 명명하였다. HCC는 GCC 선응집체와 같이 종이의 강도를 높이고, 평활도를 유지시켰으며, GCC 선응집체의 단점인 벌크의 저하를 역전시켜 높은 벌크를 형성시키는 장점을 보였다.

수질화학 조성이 수자원환경에서의 미세 부유입자 응집 거동에 미치는 영향 연구 (Investigation of the effect of water chemistry on biologically mediated flocculation in the aquatic environment)

  • 최정우;이병준
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.715-723
    • /
    • 2017
  • 생체고분자물질은 수자원환경에서 점토, 미생물, 바이오매스 등 부유입자들을 응집시키고, 침전, 퇴적시키는 역할을 한다. 본 연구는 다양한 수질화학 조건이 생체고분자물질에 의한 부유입자 응집에 미치는 영향을 파악하고자, 수질화학 조건을 제어하여 응집실험을 수행하였다. 각 응집실험은 이온강도, 2가 양이온 농도, 휴믹물질 분율이 제어된 실험조건에서 Kaolinite 현탄액에 생체고분자물질인 Xanthan Gum을 주입하여 수행하였다. 수체가 가지는 응집능은 응집체 크기 및 잔류 고형물 농도를 측정을 통하여 평가하였다. 본 연구에서, 이온강도 증가는 점토입자 및 생체고분자물질 간 정전기적 반발력을 감소시키고 생체고분자물질이 점토입자 간 가교를 형성하여 응집을 증대시킨 것으로 파악되었다. 이온강도가 0.001에서 0.1 M NaCl로 증대될 경우, 응집을 증진시켜 응집체 크기는 약 3배 이상 증대되고 부유고형물농도는 약 2.5배 이상 저감되었다. 또한, 2가 양이온이 수체에 존재하는 경우, 점토입자-생체고분자물질 혹은 생체고분자물질 상호 간 가교를 형성하여, 즉 점토-$Ca^{2+}$-고분자 또는 고분자-$Ca^{2+}$-고분자 가교를 형성하여, 생체고분자물질에 의한 부유입자 응집을 증대시켰다. 수체에 $Ca^{2+}$가 낮은 농도라도 존재할 경우, 응집을 크게 증진시켜 부유고형물농도가 원 주입농도에 비하여 20배 이상 저감되는 것으로 나타났다. 하지만, 휴믹물질이 존재하는 경우, 점토입자 표면에 흡착되어 점토입자의 정전기적 반발력을 증대시켜 생체고분자물질의 흡착을 방해하고 응집을 감소시켰다. 수체에 휴믹물질이 존재할 경우, 응집을 저감시켜 부유고형물농도는 저감되지 않고 원 주입농도와 유사하게 나타났다. 본 연구의 결과는 수자원환경에서 부유입자 및 퇴적물 거동을 이해하고 수질 및 퇴적물에 대한 최적 관리 방안을 도출하기 위한 기초 자료로 활용될 수 있으리라 기대된다.

재생지 폐수의 최적 응집조건 결정에 관한 연구 (Studies on the Determination of Optimal Flocculation Condition in Wastewater of Recycled Paper)

  • 이성호;임택준;조준형
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.44-51
    • /
    • 2001
  • Sedimentation characteristics such as SS, $BOD_5$, COD removal efficiency of waste water in the toilet paper mill using milk carton were examined. Optimum dosage of coagulant, rapid mixing time and slow mixing time were determined by turbidity, SS, COD, $BOD_5$ and then equation for treatment efficiency was suggested. Mechanical strength of floc was determined by turbidity. For the coagulant, polyacrylamide (PAM) is more efficient for removing pollution than the aluminium sulfate. Effective mixing ratios of PAM and aluminum sulfate to remove pollution are 70:30 and 30:70. The lowest turbidity was showed when rapid mixing at 300 rpm after coagulant injection was applied. That which indicates the highest point of flocs mechanical strength.

  • PDF