• Title/Summary/Keyword: Floating wave energy converter

Search Result 43, Processing Time 0.021 seconds

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

Control of 30kW Grid-Connected PCS for Wave Power Generation (파력발전용 30kW 계통연계형 PCS 제어)

  • Kim, Wan-Seok;Kim, Jae-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.470-475
    • /
    • 2019
  • This paper deals with a 30kW grid-connected PCS (Power Conversion System) for an Oscillating Water Column (OWC) wave-power generation system. Wave power generation in marine energy is suitable for Korea with the characteristics of a peninsula with three sides facing the sea. In the case of coastal disasters, wave generators can act as a breakwater to reduce damage, and can be integrated with other marine power generation systems to increase efficiency. Wave power generation systems are classified into various types, such as oscillating bodies, OWC, and overtopping according to the operation principle, and they can also be classified into two types according to the installation method: a fixed structure and floating structure. This paper proposes a 30kW grid-connected PCS topology and model for OWC wave power generation that is structurally stable with a turbine and generator that are relatively easy to maintain, and then provide a control method required for grid connection, including DC link voltage control. Simulation verification was performed to verify the proposed PCS.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.