• 제목/요약/키워드: Floating platform motion

검색결과 54건 처리시간 0.017초

해상에서의 LNG 생산을 위한 공정 고찰 (Study of Process for Offshore LNG Production)

  • 김승혁;하문근;김병우;;구근회
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구 (A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents)

  • 심천식;김민석;김철민;노유호;이재복;채광수;김강호;정다슬
    • 대한조선학회논문집
    • /
    • 제60권5호
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

자기동조 제어기를 이용한 위치확보 시스템에 관한 연구 (Analysis of Dynamic Positioning System Based on Self-Tuning Control)

  • 이상무;이판묵;홍사영
    • 대한조선학회지
    • /
    • 제26권2호
    • /
    • pp.32-40
    • /
    • 1989
  • 자동위치 확보시스템은 선박이 불규칙 해상에서 작업을 수행할 때 선체의 위치 및 선수를 일정한 작업반경 내에서 유지할 수 있도록 추진기를 자동제어하는 방법이다. 위치확보시스템의 구성은 계측시스템, 제어기시스템, 추진기시스템 및 동력시스템으로 구성된다. 본 논문은 최적제어 기법과 필터링 기법을 이용한 제어기시스템 구성에 관하여 논하였고, 제어시스템 구성을 위한 상태방정식의 정립과정을 서술하였다. 선체의 평면운동은 저주파수 운동과 고주파수 운동의 성분으로 구성되었다고 가정하였다. 저주파수 운동은 추진기에 의한 외력, 조류력 및 2차차수 파랑강제력에 기인하며 고주파수 운동은 1차 차수 파랑강제력에 의해 유기된다. 해상에서 계측되는 신호에는 선체의 운동성분 이외에도 계측오차 성분이 포함된다. 자기동조필터 및 칼만필터를 이용하여 계측신호로부터 저주파수 운동성분과 고주파수 운동성분을 각각 독립적으로 추정하고, 추정된 저주파수 운동성분을 궤환하여 제어를 수행하였다. 제어기는 교란환경 속의 최적제어기인 LQG제어기를 이용하였다. 시뮬레이션을 수행하기 위하여 Wimpey Sealab의 데이타를 이용하였다.

  • PDF

골프 드라이버스윙 시 지면반력 반복측정 횟수와 지면반력 특성 (Number of Trials for the Reliable Golf Swing Ground Reaction Force Data Collection and Its Characteristics)

  • 박영훈;염창홍;서국웅;서국은
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.115-125
    • /
    • 2007
  • Grould Reaction force(GRF) is important in human movements and GRF measurements are one of the most frequently used tool in biomechanical studies. In the studies of the golf swing motion, people refer to GRF as weight transfer. A successful golf swing motion requires many segments activation sequences which are controled by the nerve system. Due to the inter- and intra-individual variability of the human movement and the movement strategies, reliability of the measurements are important in human movement studies. Previous golf researches were based on group studies and certain events' values were analyzed. The purposes of this study were to determine the number of trials for the reliable golf swing GRF data collection, to reveal the variability level of the meaningful components of the golf swing GRF, and to classify the types of the golf swing GRF patterns. Twenty three male professional golfers($26.4{\pm}6.6$ years, $174.3{\pm}5.2\;cm$, $71.3{\pm}6.5\;kg$) signed an informed consent form prior to participation in this study. GRFs of driver swings were collected with Kistler 9285 force platform and 9865A amplifier, and calculated by the KwonGRF program(Visol, Korea). Sampling frequency was 1080 Hz. GRF data were trimmed from 1.5 s prior to the impact to 0.5 s after the impact. The number of trials for the reliable GRF collection was determined when the change in floating mean overs the 25 % of the standard deviation of that variable. Variabilities of the variables were determined by the coefficient of variation(CV) of 10 %. The types of GRF patterns were determined by visual inspection of the peak GRF shapes. The minimum number of trials for the reliable golf swing GRF data collection was five. Ten-trial seems more conservative. The value of the peak GRF was more reliable than the value of the impact GRF. The CV of the peak GRF and impact GRF were 7.4 %, 15.2 %, respectively. Because of the +/- sigh of the peak GRF appearance time, it was impossible to calculate CV of the peak GRF appearance time. Golf swing GRF patterns were classified as sing peak type, double peak type, and plateau peak type. This classification suggests the presence of the different golf swing weight transfer strategies.