• Title/Summary/Keyword: Floating offshore wind

Search Result 162, Processing Time 0.033 seconds

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency (해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구)

  • Jeon, Minu;Kim, Hogeon;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF

A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea (동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구)

  • Choi, Gun Hwan;Kim, Mi Jeong;Jang, Ki Ho;Kim, Hyo Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • We need measures that can come up with alternative about fishery living zone and enhance local acceptance for responding to the increase in the proportion of renewable energy production and construction of 12GW Offshore wind power according to Korea's Renewable Energy 3020 initiative and Korean-version New Deal. In this study, We suggest that differentiation plans of co-location model in connection with offshore wind power generation suitable for the East Sea. The East Sea is an optimal site for building of a floating offshore wind power generation(FOWPG) field. It is expected that economic effects like energy production, aquatic resource development and tourism industrialization by farming bluefin tuna which is high valued fish and suitable for offshore aquaculture on public waters in FOWPG field. And we can confirm that budget reduction, smart management by sharing operation management technology and increase in fishermen income.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Floating offshore wind turbine system simulation

  • Shi, Wei;Park, Hyeon-Cheol;Jeong, Jin-Hwa;Kim, Chang-Wan;Kim, Yeong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

A Study on Offshore Wind Farm Development through a Review of Floating Offshore Wind Power Project Cases in Norway (부유식 해상풍력 개발사례를 통한 해상풍력단지 조성 방안 연구 - 노르웨이 사례를 중심으로)

  • Taeyun Kim;Jun-Ho Maeng
    • Journal of Wind Energy
    • /
    • v.14 no.2
    • /
    • pp.14-25
    • /
    • 2023
  • This study focuses on proposing measures for the reasonable development of offshore wind farms using the case of Norway, which was the first nation in the world to build a floating offshore wind farm of 80 MW or more. Norwegian authorities conducted a strategic environment assessment in 2012 to select offshore wind farm sites, discovered 15 potential sites, and finally decided on two designated sites in 2020. Based on various survey data such as seabirds, marine environment, and fishing activities, scientific-based spatial analysis was conducted to select additional offshore wind farm sites in line with future development plans. In addition, a government-led steering committee and advisory group have established marine spatial plans since 2002. Therefore, it will be possible to listen to and coordinate the opinions of stakeholders by using the steering committee and advisory group for offshore wind power development. By examining the case of Norway, we suggest the following policy points that can achieve carbon neutrality and develop sustainable offshore wind farms: 1. Establish a government-led steering committee and advisory group that can select potential sites for offshore wind farms by coordinating the opinions of stakeholders 2. Induce efficient and sequential offshore wind farm development by using various survey data and scientific-based spatial analysis.

Structural Dynamics Analyses of a 5MW Floating Offshore Wind-Turbine Using Equivalent Modeling Technique (등가모델링기법을 이용한 5MW급 부유식 해상용 풍력발전기 구조동역학해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Kim, Dong-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, the computational structural dynamic modeling of floating offshore wind turbine system is presented using efficient equivalent modeling technique. Structural dynamic behaviors of the offshore floating platform with 5MW wind turbine system have been analyzed using computational multi-body dynamics based on the finite element method. The considered platform configuration of the present offshore wind turbine model is the typical spar-buoy type. Equivalent stiffness and damping properties of the floating platform were extracted from the results of the baseline model. Dynamic responses for the floating wind turbine models are presented and compared to investigate its structural dynamic characteristics. It is important shown that the results of the present equivalent modeling technique show good and reasonable agreements with those by the fully coupled analysis considering complex floating body dynamics.

  • PDF

Motion Analysis of 5-MW Floating Offshore Wind Turbine (5MW 부유식 풍력발전기의 운동 해석)

  • Shin, Hyun-Kyoung;Kim, Kyoung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.64-68
    • /
    • 2011
  • The motion responses of a 5-MW floating offshore wind turbine were simulated in regular and irregular waves and its RAOs and significant motion responses were calculated, respectively. The floating offshore wind turbine employed in this simulation was the OC3-Hywind designed by the National Renewable Research Laboratory, USA. The numerical simulation was carried out using MOSES (Multi-Operational Structural Engineering Simulator), which is widely used to analyze and design floating offshore structures in the gas and oil industry.