• Title/Summary/Keyword: Floating breakwater(FBW)

Search Result 2, Processing Time 0.014 seconds

A Study on the Long-Wave Effective Cross Section of Floating Breakwater (장주기파에 효율적인 부유식방파제 단면 형상에 대한 연구)

  • 안용호;류황진;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.133-138
    • /
    • 2000
  • In this paper some shapes of the FBW cross sections were examined to improve the performance of FBW for the long wave. Trapezoidal section and prominence section were examined. Linear potential theory is used and the boundary element method is use for numerical computation. Proper choice of the pontoon geometry may improve the transmission coefficient in the long wave range for a given wave period.

  • PDF

A Study on the Long-Wave Effective Floating Breakwater I: On Trapezoid and Prominence Cross Section (장주기파에 효율적인 부유식방파제에 대한 연구 I: 사다리꼴과 요철 단면형상에 대하여)

  • 김도영;안용호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • In this paper, trapezoid sections and prominence sections were examined to improve the performance of floating breakwater in long waves. The linear potential theory is used and the boundary element method with a matching boundary is employed for numerical computation. The effects of the side slope of the trapezoid section and the geometry ratio of the prominence section on the floating breakwater were examined. It was found that trapezoid sections show lower transmission coefficients than the rectangular sections in the long wave range. In prominence sections the size of the sides are more important than the size of the top. Proper choices of the pontoon type geometry may move the local minimum point of the wave transmission coefficient toward the longer wave ranges and improve the performance of the floating breakwater in the long wave range for a given wave period.

  • PDF