• Title/Summary/Keyword: Floating Photovoltaic System

Search Result 40, Processing Time 0.022 seconds

The Efficiency Analysis of Tracking-Type Floating PV System (추적식 수상 태양광 발전 시스템 성능 분석)

  • Yang, Yoen Won;Jeong, Seon Ok;Shin, Hyun Woo;Lee, Kil Song
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink (매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구)

  • Kim, In-Soo;Oh, Sung-Chan;Kim, Yang-Mo;Choi, Young-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.

Study on Analysis of Suitable Site for Development of Floating Photovoltaic System (수상태양광 발전시스템 개발을 위한 적지조사에 관한 연구)

  • Lee, Sung-Hun;Lee, Nam-Hyung;Choi, Hyeong-Cheol;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • Recently, interests in renewable energy have gradually increased. Photovoltaic system of various renewable energy is the most interest in power sources. Nowadays, the market of photovoltaic system is expected to be expanded due to the introduction of RPS(Renewable Portfolio Standard). Floating photovoltaic system is a new power system using the water surface above the dam and reservoir water. Floating photovoltaic system is different from the traditional approach to the development of solar power system causing problems such as environmental degradation. This paper investigates the analysis methods of suitable site for the development of floating photovoltaic system. The A,B,C as the optimal candidates were selected in hap cheon dam. The C is the best suitable site in A,B,C considering the expected power generation. Applied methods have effectively done to develop floated photovoltaic system.

Modified Design of Floating Type Photovoltaic Energy Generation System (부유식 태양광 에너지 발전시설의 수정설계)

  • Lee, Young-Geun;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • We had designed and constructed floating type photovoltaic energy generation system. In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system. The link system installed between the unit modules is made of pultruded FRP, tire, and polyethilene synthetic fiber rope. The link system is analized by the finite element method. The floating type photovoltaic energy generation system consisted of unit modules connected by link system is installed successfully at sea site. In addition, we present the modified design of the floating type photovoltaic energy generation system based on the proto type system.

  • PDF

Development of Tracking Algorithm for Floating Photovoltaic System

  • So, Byung-Moon;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2019
  • Since floating facility with mooring system can be moved and rotated by wind or other environmental variables, the error in azimuthal angle must be compensated using a GPS receiver and geo-magnetic sensor. Accordingly, when an existing photovoltaic tracking algorithm is applied to a floating photovoltaic system, it is difficult to do the optimal solar tracking. In this paper, an effective azimuthal angle algorithm is develop for the photovoltaic tracking in floating condition. In order to verify the developed algorithm, the prototype of the floating photovoltaic system is manufactured and the developed algorithm is applied to the system. The algorithm shows a good tracking feasibility on the prototype.

Design loads for floating solar photovoltaic system: Guide to design using DNV and ASCE standards

  • Gihwan Kim;Moonsu Park
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • The market of the floating solar photovoltaic system is rapidly growing around the world with the rise of renewable energy that can replace fossil energy. While the floating solar photovoltaic system is operating and being installed in several countries, the system is exposed to the risk in terms of structural safety due to the absence of the proper design guideline. In this paper, design loads suitable for the floating solar photovoltaic system are presented. Utilizing the existing reliable design standards such as ASCE 7-16 (ASCE 7-16 2016) and DNV-RP-C205 (DNV-RP-C205 2010), the appropriate design loads for the floating solar photovoltaic system are presented. The proper load combinations are also presented by putting wave load based on DNV standards (DNV-OS-C101 2015 and DNV-OS-C201 2015) into the load combinations in ASCE standards (ASCE 7-16 2016). We present the load combinations for the allowable stress design and load and resistance factor design, respectively.

The Technique of Installing Floating Photovoltaic Systems (수상태양광의 시공기술에 관한 실증연구)

  • Choi, Young-Kwan;Yi, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4447-4454
    • /
    • 2013
  • In October 2011, a commercialized 100kW class floating photovoltaic system positive plant was installed at Hapcheon dam a multi-purpose reservoir the first time ever in the nation. Floating photovoltaic system differs in water float, mooring device and underwater cable process from land photovoltaic system. As for land and building photovoltaic power generation equipments, many installation cases and skilled experiences are available, and thus installation is not difficult. However, commercial power generation floating photovoltaic system, which is attempted for the first time in the nation, requires to be designed and installed through a series of processes like technical review and verification of data by process in comparison with similar cases. The structure of floating photovoltaic system, an equipment for float photovoltaic module and other electrical equipment, is required to withstand weather environments like wind or typhoon etc and yet not affect water quality negatively, and for implementation of this system, construction efficiency and economy etc should be considered comprehensively. In this paper, the techniques of installing floating photovoltaic structure, mooring device, underwater cable, electrical equipment and remote monitoring control system are explained. The 100kW floating PV system is operating with 15% average capacity factor.

A Study on Risk of Electric Shock from Damaged Grid Connection Cable in Floating Photovoltaic System (수상 태양광 발전설비 계통 연계 케이블 손상시 감전 위험에 관한 연구)

  • Song, Young-Sang;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.14-19
    • /
    • 2014
  • Recently, many renewable energy generating businesses are ongoing progress due to the introduction of the RPS(Renewable Portfolio Standards) as well as the needs of environmentally friendly energy resources. Researches on photovoltaic system are actively being processed since the photovoltaic system is relatively easy to install and becomes commercialized in many domestic application areas. Furthermore, the floating photovoltaic system is likely to be installed more actively since the conventional photovoltaic system requires relatively large areas of land. Also, the floating photovoltaic system is more efficient than photovoltaic system installed in land due to the operation in lower temperature. However, safety problems such as electric shock could arise since the cable should be installed in the water. In this paper, the leakage current and the voltage rising are measured and analyzed for the case when the cables are damaged connecting the floating photovoltaic system to the grid.

Development of the Floating Type Photovoltaic Energy Generation System (부유식 태양광 에너지 발전시설의 개발)

  • Choi, Hoon;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.16-26
    • /
    • 2010
  • In this paper, we present the result of investigations pertaining to the development of the floating type photovoltaic energy generation system. Pultruded FRP has superior mechanical and physical properties compared with those of conventional structural materials. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. In the paper, we discussed the development concepts of the floating type photovoltaic energy generation system, briefly. The mechanical properties of the FRP structural member used in the development are investigated through the tensile and compression tests. Test results are used in the finite element analysis and the design of the system. In addition, bolted connections of the members are briefly discussed and the strengths of FRP bolted connections are estimated based on the results of experiments. The experimental results are compared with the finite element analysis results and discussed briefly. The floating type photovoltaic energy generation system is designed, fabricated, and installed successfully in site.

  • PDF