• 제목/요약/키워드: Floating Offshore Structure

검색결과 145건 처리시간 0.023초

파도에서 플래핑 포일을 적용한 부유체의 서지 운동에 관한 실험적 연구 (Experimental Study of Surge Motion of a Floater using Flapping Foils in Waves)

  • 심우림;쿠마르 루페시;유영재;신현경
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.211-216
    • /
    • 2019
  • In order to utilize the marine environment in various fields such as renewable energy and offshore plant, it is necessary to utilize the far and deep ocean. However, there is still a limit to overcome and utilize the extreme deep-sea environment. Currently, the mooring system, which is the representative position control method of floating structure, has a structural and economic limit to expand the installation range to extreme deep-sea environment. Research has been conducted to utilize wave energy by developing floater using flapping foil as an alternative for station keeping in the deep sea by University of Ulsan. Based on the research, a model test was conducted for application to actual structures. In this study, we investigate how the floating body with passive flapping foils move in regular waves with different periods and study the condition of the model that can maintain its position within a certain range by overcoming the movement.

연성된 과대 경사 각도를 고려한 부유식 구조물의 비선형 유체정역학 힘과 자세 (Computation of Nonlinear Hydrostatic Force and Position of a Floating Structure Considering the Coupled Large Inclined Angles)

  • 차주환;구남국;박광필
    • 한국CDE학회논문집
    • /
    • 제21권1호
    • /
    • pp.90-98
    • /
    • 2016
  • When ships and offshore plants are flooded or the floating crane is equipped with a heavy object, these floating structures are excessively inclined. In this case, immersion, heel, and trim affecting the hydrostatic restoration performance are very large and are coupled each other. In this paper, in order to calculate a static equilibrium position of floating structures with excessive inclination, the nonlinear governing equations were constructed by sequential linearization. In the governing equation, the immersion, heel, and trim are fully coupled, and the equations are represented using a plane area, a primary moment, and a moment of inertia of the water plane area. Therefore, it is possible to calculate the additional factor related the water plane area for estimating stability. Position and orientation of the floating structure are obtained by iterative calculation. The calculated results are compared with the previous studies in the aspect to the performance and the accuracy.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성 (Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves)

  • 김철현;조효제;이승철;구자삼
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

탄성거동에 의한 유체력을 고려한 초대형 부유식 구조물의 유탄성응답 해석 (Hydroelastic Response Analysis of Very Large Floating Structures Including the Hydrodynamic Forces due to Elastic Motions in Waves)

  • 김철현;이창호;이승철;구자삼
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.101-107
    • /
    • 2006
  • Recently, with the increase in requirements for marine development, a marine urbanism is being visualized, with more and more huge-scale structures at the scope of the ocean space utilization. In particular, a pontoon-type structure has attracted attention, since The Floating Structures Association of Japan proposed a new concept as the most suitable one of floating airports. The Very Lage Floating Structure (VLFS) is considered a flexible structure, for a quite large length-to-breadth ratio and its geometrical flexibility. The main objective of this study is to makean exact and convenient prediction about the hydro-elastic response on very large offshore structures in waves. The numerical approach for the hydro-elastic responses is based on the combination of the three dimensional source distribution method and the dynamic response analysis method, which assumed a dividing pontoon type structure, as many rigid bodies connected elastic beam elements. The established hydo-elastic theory was applied to the radiation forces caused by motions of a whole structure, formulated using the global coordinate system, which has the origin at the center of the structure. However, in this paper, we took radiation forces, occurred by individual motions of floating bodies, into consideration. The calculated results show good agreement with the experimental and calculated results by Yago.

다점지지 계류시스템의 정적해석에 대한 연구 (A Study on the Analysis of Multi-let Spread Mooring Systems)

  • 신현경;김덕수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Dynamic behavior of TLP's supporting 5-MW wind turbines under multi-directional waves

  • Abou-Rayan, Ashraf M.;Khalil, Nader N.;Afify, Mohamed S.
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.203-216
    • /
    • 2016
  • Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD's), and plan stability for all configurations.

유공벽이 설치된 부유체 동요 평가를 위한 주파수 영역 해석 (Frequency-Domain Analysis for Motion of Floating Structures with Perforated Wall)

  • 김정수;정연주;김영택
    • 한국해안·해양공학회논문집
    • /
    • 제36권1호
    • /
    • pp.1-10
    • /
    • 2024
  • 해상 산업시설을 중심의 부유식 구조물 수요가 생활 밀접형 시설로 점차 확대됨에 따라, 부유 구조물의 동요를 저감하기 위한 기술 필요성이 대두되고 있다. 본 연구는 부유체 외부에 유공벽이 설치된 부유식 구조물을 제시하고, 규칙파 및 불규칙파 조건에서의 주파수 영역 해석을 통해 해당 구조물의 응답을 조사하였다. 제안된 구조물은 내부 부유체와 유공벽이 포함된 외부 부유체가 결합된 형태로, 유공률별(0~30%) 해석 모델을 생성해 부유체 중심점과 가장자리에서의 상하 및 회전 동요가 비교되었다. 해석 결과는 유공벽의 유공률 증가를 통해 부유체의 상하 및 회전 동요를 저감할 수 있음을 보여주었다. 또한 제안된 부유체를 사용함으로써 무유공 부유체 대비 규칙파와 불규칙파 조건에서 각각 10%, 2% 내외의 응답 감소 효과가 나타남을 확인할 수 있었다.

복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구 (Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current)

  • 박지원;이승재;조효제;황재혁;한성훈
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

동적위치유지시스템을 이용하는 부유식 해양구조물의 시간대역 성능평가를 위한 프레임워크의 개발 (Development of a Framework for Evaluating Time Domain Performance of a Floating Offshore Structure with Dynamic Positioning System)

  • 이재용
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.718-724
    • /
    • 2017
  • 최근 생산 부분에 집중되어 있던 국내 해양플랜트 산업구조를 엔지니어링 분야로 확대하기 위한 노력이 지속되어왔다. 하지만 부유식 해양플랜트 엔지니어링 기술의 핵심 중 하나인 시간대역에서의 운동해석의 경우 국외 회사에서 제공되는 정보에 거의 전적으로 의존하여 왔다. 특히 동적 위치 유지 시스템은 초기 설계에서 해외 선진사가 제공하는 정보에 기반하며, 그 결과를 선형에 반영하기 위해서는 시간적으로나 비용 면에서 많은 손실을 감수해야 한다. 본 논문에서는 동적위치유지시스템 (Dynamic Positioning System, DPS)을 사용하는 부유식 해양구조물의 시간대역 운동 해석에 필요한 프로그램의 프레임워크를 다룬다. 개발된 프레임워크는 시간대역 해석을 쉽게 수행할 수 있도록 해석에 필요한 입력 데이터를 생성하고, DPS의 제어 알고리즘 및 성능을 평가할 수 있도록 모듈화 하였다. 이를 통해 DPS의 배치 및 용량결정과 여러 가지 제어 알고리즘의 테스트가 쉽게 이루어지도록 하였다. 실제 모델 선박을 이용한 시뮬레이션을 통해 개발된 프레임워크의 실효성을 검증하였으며 전체 작업에 걸리는 시간이 50% 이상 감소하는 것을 확인하였다.