• Title/Summary/Keyword: Floating Offshore

Search Result 372, Processing Time 0.023 seconds

Analysis of Earthquake Responses of a Floating Offshore Structure Subjected to a Vertical Ground Motion (해저지진의 수직지반운동에 의한 부유식 해양구조물의 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan;Jin, Byeong Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.279-289
    • /
    • 2014
  • Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

Simplified Model for the Weight Estimation of Floating Offshore Structure Using the Genetic Programming Method (유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델)

  • Um, Tae-Sub;Roh, Myung-Il;Shin, Hyun-Kyung;Ha, Sol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In the initial design stage, the technology for estimating and managing the weight of a floating offshore structure, such as a FPSO (Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, has a close relationship with the basic performance and the price of the structure. In this study, using the genetic programming (GP), being used a lot in the approximate estimating model and etc., the weight estimation model of the floating offshore structure was studied. For this purpose, various data for estimating the weight of the floating offshore structure were collected through the literature survey, and then the genetic programming method for developing the weight estimation model was studied and implemented. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of a FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore structure at the early design stage.

A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea (동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구)

  • Choi, Gun Hwan;Kim, Mi Jeong;Jang, Ki Ho;Kim, Hyo Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • We need measures that can come up with alternative about fishery living zone and enhance local acceptance for responding to the increase in the proportion of renewable energy production and construction of 12GW Offshore wind power according to Korea's Renewable Energy 3020 initiative and Korean-version New Deal. In this study, We suggest that differentiation plans of co-location model in connection with offshore wind power generation suitable for the East Sea. The East Sea is an optimal site for building of a floating offshore wind power generation(FOWPG) field. It is expected that economic effects like energy production, aquatic resource development and tourism industrialization by farming bluefin tuna which is high valued fish and suitable for offshore aquaculture on public waters in FOWPG field. And we can confirm that budget reduction, smart management by sharing operation management technology and increase in fishermen income.

Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency (해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구)

  • Jeon, Minu;Kim, Hogeon;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Estimation of Dynamic Motions and Mooring Forces for Floating Type Offshore Platform Based on Hydrodynamic Analysis (동수력학 해석 기반 부유식 해양 플랫폼의 동적 운동 및 계류력 산정)

  • Cha, Ju-Hwan;Moon, Chang-Il;Song, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.48-57
    • /
    • 2012
  • This paper deals with numerical analyses in the context of estimations of hydrodynamic motions and dynamic loads for a floating type offshore platform using some exclusive simulation code such as code for the simulation of a floating type of offshore crane based on multi-body dynamics, along with the commercial code AQWA. Verifications of numerical models are carried out by comparing the RAO results from the simulation code. In the verification analyses, hydrodynamic motions are examined in the frequency domain for the floating type offshore platform according to the mooring lines. Both the hydrodynamic motions and dynamic loads are estimated for floating type offshore platforms equipped with the catenary type and taut mooring lines. A review and comparison are carried out for the numerically estimated results. The structural safety of the connection parts in an offshore structure such as a floating type offshore platform is one of the most important design criteria in view of fatigue life. The dynamic loads in the connecting area between a floating type offshore platform and its mooring lines are estimated in detail according to variations in the mechanical properties of the mooring lines. The dynamic tension load on the mooring lines is also estimated.

A study on the Motion Analysis of the Fishing Spot of Floating Offshore Structure Type (부유체식 바다 낚시터의 동요해석에 관한 연구)

  • 박성현;박석주;이돈출
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1006-1012
    • /
    • 2003
  • Recently, floating offshore structure is studied as one of the effective utilization of the ocean space. And floating structure are now being considered for various applications such as floating airports, offshore cities and so on. The motion analysis of the fishing spot of floating offshore structure as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this structure. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the motion of the floating fishing spot structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF