• Title/Summary/Keyword: Floating Motion

Search Result 439, Processing Time 0.027 seconds

Experimental Study on Efficiency of Floating Vertical Axis Wind Turbine with Variable-Pitch (부유식 가변 피치형 수직축 풍력발전기의 발전효율에 관한 실험 연구)

  • Kim, Jae-Heui;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Jang, Min-Suk;Lee, Byeong-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.202-207
    • /
    • 2018
  • This paper presents the efficiency of a floating vertical axis wind turbine with variable-pitch. A model was designed to use the lift force and drag force for blades with various pitch angles. The blade's pitch angle is controlled by the stopper. To validate the efficiency of the wind turbine discussed in this paper, a model test was carried out through a single model efficiency experiment and wave tank experiment. The parameters of the single model efficiency experiment were the wind speed, electronic load, and pitch angle. The wave tank experiment was performed using the most efficient pitch angle from the results of the single model efficiency experiment. According to the results of the wave tank experiment, the surge and pitch motion of a structure slightly affect the efficiency of a wind turbine, but the heave motion has a large effect because the heights of the wind turbine and wind generator are almost the same.

Management of Ipsilateral Fractures of Humerus and Forearm in Adults (성인에서 동측에 발생한 상완골과 전완골 골절의 치료)

  • Sohn Sung-Keun;Kim Byeong-Hwan;Yang Sung-Wook
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.2
    • /
    • pp.212-220
    • /
    • 1998
  • Concomitant ipsilateral fractures of the humerus, radius and ulna are uncommon combined injury and are also called "floating elbow". It was found that this injury was usually a result of rather severe trauma and frequently associated injuries to other organ systems. It is controversial in the treatment of the "floating elbow", but the current treatment recommendations are open reduction and internal fixation of both the humerus and the forearm fracture with early initiation of range of motion exercises. The authors reviewed thirteen cases of ipsilateral fractures of the humerus, radius and ulna treated in our clinic from January 1992 to March 1997, and average follow-up period was over 18 months(range, 12 to 36 months). The results obtained were as follows; 1. The most common cause of injury was traffic accident and most common location of fractures was mid-third in both humerus and forearm. 2. The shape of fractures was transverse or comminuted in most cases. 3. The good clinical results were obtained by open reduction and internal fixation of both the humerus and the forearm fracture with early initiation of range of motion exercises. 4. The recovery was affected by the severity of the initial trauma and method of the treatment. 5. According to the Lange and Foster method, the functional result was good in 8 cases, fair in 4 cases and poor in 1 cases.

  • PDF

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

Study on Moonpool Resonance Effect on Motion of Modern Compact Drillship

  • Yang, Seung Ho;Yang, Young Jun;Lee, Sang Beom;Do, Jitae;Kwon, Sun Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.53-60
    • /
    • 2013
  • A drillship is a representative floating offshore installation. The boom in oil and gas field development has dramatically increased the demands for drillships. Drillships have a moonpool in the center area of the ship for the purpose of drilling. This moonpool has an effect on the seakeeping performance of a drillship in the vicinity of the resonance frequency. Because of the moonpool, drillships act in different resonance modes, called the sloshing mode and piston mode. The objective of this study was to find the moonpool effect on the motion of a drillship through the motion analysis of a currently operating modern compact drillship. The predicted resonance frequencies based on Molin's theoretical formula, Fukuda's empirical formula, and BEM-based numerical analysis are compared. The accuracy of the predictions using the theoretical and empirical formulas is compared with the numerical analysis and evaluated. In the case of the piston mode, the difference between the resonance frequency from theoretical formula and the resonance frequency from the numerical analysis is analyzed. The resonance frequency formula for more a complex moonpool geometry such as a moonpool with a cofferdam is necessarily emphasized.

An Experimental Study on the Rotational Performances of NC Lathe Spindle System (NC 선반주축 의 회전성능 향상 을 위한 실험적 연구)

  • 이형식;이봉진;송기무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.86-94
    • /
    • 1984
  • In order to improve the rotational performances of NC lathe spindle system in high speed range, a new type(Floating-type driven by V-belt)spindle system was optimally designed and experimented. Through the results of the experiments, the rotational performances of the new type spindle system was discussed and compared with the three equivalent conventional lathe spindle systems. The spindle rotational accuracy( radial error motion of spindle axis), the accelation and the temperature rise of the front spindle bearings for the non-cutting operation were considered as the spindle rotational performances. The radial error motion of the spindle axis was measured by applying the modified L.R.L. method. Compared with the equivalent conventional spindle systems, the following results were obtained. (1) The new type spindle system reduces the radial error motion of the spindle axis in high speed range(1800rpm-2000rpm). (2) The new type spindle system reduces the acceleration and the temperature rise of the spindle bearings considerably with increasing the spindle speed. It is also confirmed that, by this new type spindle system, the max. allowable speed can be increased with satisfying the spindle rotational performances.

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

The effects of LNG-tank sloshing on the global motions of FLNG system

  • Hu, Zhi-Qiang;Wang, Shu-Ya;Chen, Gang;Chai, Shu-Hong;Jin, Yu-Ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.114-125
    • /
    • 2017
  • This paper addresses a study of inner-tank sloshing effect on motion responses of a Floating Liquefied Natural Gas (FLNG) system, through experimental analysis and numerical modeling. To investigate hydrodynamic characteristics of FLNG under the conditions of with and without LNG-tank sloshing, a series of numerical simulations were carried out using potential flow solver SESAM. To validate the numerical simulations, model tests on the FLNG system was conducted in both liquid and solid ballast conditions with 75% tank filling level in height. Good correlations were observed between the measured and predicted results, proving the feasibility of the numerical modeling technique. On the verified numerical model, Response Amplitude Operators (RAOs) of the FLNG with 25% and 50% tank filling levels were calculated in six degrees of freedom. The influence of tank sloshing with varying tank filling levels on the RAOs has been presented and analyzed. The results showed that LNG-tank sloshing has a noticeable impact on the roll motion response of the FLNG and a moderate tank filling level is less helpful in reducing the roll motion response.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.