• 제목/요약/키워드: Floating Die

검색결과 11건 처리시간 0.018초

액체생검용 Lab-on-a-Disc의 평탄도 향상을 위한 최적화 (Design Optimization to achieve an enhanced flatness of a Lab-on-a-Disc for liquid biopsy)

  • 홍석관;이정원;황택용;이성훈;김경태;강태곤;황철진
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2023
  • Lab-on-a-disc is a circular disc shape of cartridge that can be used for blood-based liquid biopsy to diagnose an early stage of cancer. Currently, liquid biopsies are regarded as a time-consuming process, and require sophisticated skills to precisely separate cell-free DNA (cfDNA) and circulating tumor cells (CTCs) floating in the bloodstream for accurate diagnosis. However, by applying the lab-on-a-disc to liquid biopsy, the entire process can be operated automatically. To do so, the lab-on-a-disc should be designed to prevent blood leakage during the centrifugation, transport, and dilution of blood inside the lab-on-a-disc in the process of liquid biopsy. In this study, the main components of lab-on-a-disc for liquid biopsy are fabricated by injection molding for mass production, and ultrasonic welding is employed to ensure the bonding strength between the components. To guarantee accurate ultrasonic welding, the flatness of the components is optimized numerically by using the response surface methodology with four main injection molding processing parameters, including the mold & resin temperatures, the injection speed, and the packing pressure. The 27 times finite element analyses using Moldflow® reveal that the injection time and the packing pressure are the critical factors affecting the flatness of the components with an optimal set of values for all four processing parameters. To further improve the flatness of the lab-on-a-disc components for stable mass production, a quarter-disc shape of lab-on-a-disc with a radius of 75 mm is used instead of a full circular shape of the disc, and this significantly decreases the standard deviation of flatness to 30% due to the reduced overall length of the injection molded components by one-half. Moreover, it is also beneficial to use a quarter disc shape to manage the deviation of flatness under 3 sigma limits.

  • PDF