• Title/Summary/Keyword: Floating Body

Search Result 342, Processing Time 0.022 seconds

Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves (Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Jong-Wook;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

Lowering Simulation using Floating Crane in Waves (파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Byoung-Wan;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.

Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique (점성 수치파랑수조 기술을 이용한 고정된 부유체의 파랑하중 산정)

  • Kim, Kyung-Mi;Heo, Jae-Kyung;Jeong, Se-Min;Park, Jong-Chun;Kim, Wu-Joan;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In the present study, a flow analysis for estimating the wave loads acting on a stationary floating body inside a viscous numerical wave tank was performed using the commercial software FLUENT. The governing equations for the viscous and incompressible fluid motion were the continuity and Navier-Stokes equations, and a piston-type wavemaker was employed to reproduce wave environments. First, the optimal simulation conditions were derived through numerical tests for the wavemaker and wave absorber, and then the wave loads and wave run-up on a vertical truncated cylinder were estimated and compared with the experimental and other numerical results.

Numerical Simulation of Floating Body Motion in Surface Waves by use of a Particle Method (입자법을 이용한 파랑중 부유체 운동의 수치시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • A particle method recognized as one of gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods in order to solve the flow field with complicated boundary shapes. In the present study, breaking waves with a floating body are simulated to investigate fluid-structure interactions in the coastal zone.

  • PDF

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Optimization Analysis of the Shape and Position of a Submerged Breakwater for Improving Floating Body Stability

  • Sanghwan Heo;Weoncheol Koo;MooHyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Submerged breakwaters can be installed underneath floating structures to reduce the external wave loads acting on the structure. The objective of this study was to establish an optimization analysis framework to determine the corresponding shape and position of the submerged breakwater that can minimize or maximize the external forces acting on the floating structure. A two-dimensional frequency-domain boundary element method (FD-BEM) based on the linear potential theory was developed to perform the hydrodynamic analysis. A metaheuristic algorithm, the advanced particle swarm optimization, was newly coupled to the FD-BEM to perform the optimization analysis. The optimization analysis process was performed by calling FD-BEM for each generation, performing a numerical analysis of the design variables of each particle, and updating the design variables using the collected results. The results of the optimization analysis showed that the height of the submerged breakwater has a significant effect on the surface piercing body and that there is a specific area and position with an optimal value. In this study, the optimal values of the shape and position of a single submerged breakwater were determined and analyzed so that the external force acting on a surface piercing body was minimum or maximum.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

The research of the floating-type wave power pump composed of a slope, a curved surface reflection board and phase plates

  • Horikomi, Tomoyuki;Shoji, Kuniaki;Minami, Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.95-104
    • /
    • 2006
  • A floating-type wave power pump is a device which sends air into water by using wave power. The floating-type wave power pump has the new configuration composed of a curved surface reflection board, a slope, and phase plates. As a result of a water-tank experiment it turned out that the floating-type wave power pump with a curved surface reflection board and a slope raised power and efficiency in the wide wavelength waves. The result of a marine experiment was also preferable. The floating-type wave power pump sends air into the sea by using wave power, so it can be used for the improvement of marine environment. In addition, the floating body constituted of a curved surface reflection board, a slope, and phase plates, is effective as a device to utilize the energy of a wave. Therefore, it can be widely used for a wave power generation, pumping up deep seawater.

  • PDF

Adaptive Stereoscopic-PIV System for the Analyses of the Flow-Structure-Interactions (FSI) of Air-Lifted Bodies (공기부양 물체의 유동-구조 연동운동 해석을 위한 능동형 스테레오-PIV 시스템)

  • Doh, Deog-Hee;Hwang, Tae-Gyu;Jo, Hyo-Je;Tanaka, Kenji;Takei, Masahiro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.420-425
    • /
    • 2006
  • Measurements results of flow-structure-interactions (FSI) of an air-lifted body are introduced. An adaptive stereoscopic-PIV system has been constructed for the measurements of the air-lifted body. The measurement system consists of two cameras and optical sensors. The flow characteristics around a lifted cylinder body(length=60mmm, diameter =10mm, polystyrene) in the swirling flow field in a vertical pipe (length=600mm, inner diameter=) are investigated by the use of the constructed adaptive stereoscopic-PIV system. The images of the two cameras were used for the analysis of the flow fields around the floated cylinder body. The images of the cylinder body captured by the two cameras were used for the analyses of its motions. Four optical sensors (LED) were used for the detection of the postures of the freely-lifted cylinder body. The FSI analyses have been carried out to find the physical conditions at which the floating body is stabilized with its upright postures.

  • PDF