• Title/Summary/Keyword: Floating Body

Search Result 341, Processing Time 0.024 seconds

Numerical study of sway motion of a rectangular floating body with inner sloshing phenomena (내부 슬로싱 현상을 이용한 사각상자 형태의 부유체 Sway 거동 모사에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.161-165
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing phenomena of liquid inside a tank can suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its sway motion are investigated by varying excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, sway motion of the floating body subjected to wave with five different frequencies are simulated. The normalized amplitudes of sway motion of the target floating body are compared over the frequency, for cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to excitation frequency.

  • PDF

Experimental Study on the Reduction of Vertical Motion of Floating Body Using Floating-Submerged Bodies Interaction (부유체-몰수체 상호작용을 이용한 부유체 상하운동 저감에 대한 실험적 연구)

  • Shin, Min-Jae;Koo, WeonCheol;Kim, Sung-Jae;Heo, Sanghwan;Min, Eun-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.485-491
    • /
    • 2017
  • An experimental study on the reduction of vertical motion of floating body using floating-submerged body interaction was performed in a two-dimensional wave channel. The system consisting of a floating and submerged body that only move vertically was modeled. This experiment was designed based on the results of theoretical analysis of two-body interaction. The results showed a tendency to significant reduction of heave RAO of floating body due to submerged body. Various connection line stiffness and dimension of the submerged body were applied to investigate the effect of two-body interaction on the vertical motion of the bodies, Heave RAOs of the floating-submerged body were compared with those of single body. From the comparison study, we obtained an optimum condition of connection line and dimension of submerged body for maximum heave reduction at the resonant period of single body.

Numerical Investigation on Surge Motion of a Rectangular Floating Body due to Inner Sloshing Phenomena (내부 슬로싱 현상에 따른 사각상자 형태의 부유체 서지 거동에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.662-668
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing motion of liquid inside a tank is known to suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its surge motion are investigated by varying external excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, surge motion of the floating body subjected to external wave is simulated for five different excitation frequencies of which the center frequency equals to the natural frequency of internal liquid sloshing. The normalized amplitudes of surge motion of the target floating body are compared according to the excitation frequency, for the cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to the excitation frequency.

Dynamic characteristics between waves and a floating cylindrical body connected to a tension-leg mooring cable placed in a simulated offshore environment

  • Song, Juhun;So, Soo-Hyun;Lim, Hee-Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.375-385
    • /
    • 2016
  • Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.

A Study on the Improvement of the Motion Performance of Floating Marina Structures Considering Korea Coastal Environment (한국해양환경을 고려한 부유식 마리나 구조물의 운동성능 향상에 관한 연구)

  • Kim, Dong-Min;Heo, Sanghwan;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • The aim of this study was to improve the vertical motion performance of floating marina structures and to optimize the shapes of the structures for the Korea coastal environment. The floating body is connected to a plate-shaped submerged body through a connecting line under the water that has a stiff spring that serves to reduce the heave response. This system, which has two degrees of freedom, was modelled to analyze the interaction between the floating body and the submerged body. The vertical motion of the two-body system was compared with the motion of a single body to verify that the system could perform as an optimized model.

A Study on GCNMOS-based ESD Protection Circuit Using Floating-Body Technique With Low Trigger Voltage (Floating-Body기술을 이용한 낮은 트리거 전압을 갖는 GCNMOS 기반의 ESD 보호회로에 관한 연구)

  • Jeong, Jun-Mo
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.150-153
    • /
    • 2017
  • In this paper, a structure of GCNMOS based ESD protection circuit using floating-body technique is proposed. TCAD simulation of Synopsys was used to compare with the conventional GGNMOS and GCNMOS. Compared with the conventional GCNMOS, the proposed ESD protection circuit has lower trigger voltage and faster turn-on-time than conventional circuit because of the added NMOSFET. In the simulation result, the triggering voltage of the proposed ESD protection circuit is 4.86V and the turn-on-time is 1.47ns.

Effect of the floating body shape and other composition on the hydrodynamic safety of floating photo-voltaic system (수상 태양광 발전 시스템의 부유체 형상과 구성요소가 수력학적 안전성에 미치는 영향)

  • Choi, Ji-Woong;Lee, Gyu-Han;Kim, Jae Un;Heo, Nam Wook;Cha, Yong Hyun;Ha, Hojin
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • As the photo-voltaic (PV) industry grows, the floating PV has been suggested to resolve current environmental destruction and a lack of installation area. Currently, various floating PV systems have been developed, but there is a lack of studies on how the shape of the floating body and other compositions are affecting structural behavior. In this study, the behavior of the floating PV was investigated at the various length of mooring lines, stiffness of connecting hinges, and size of floating bodies. The shortest mooring lines with the distributed type floating PV showed the least force on the floating body and corresponding motion. A frictionless hinge is safer at the regular and low-height wave, while a stiff hinge is safer at irregular and high-height wave. In addition, due to the bi-axial distribution of the connecting hinge, 45° direction wave was found to be the most dangerous.

Numerical Analysis of Floating-Body Motions in Varying Bathymetry

  • Kim, Taeyoung;Kim, Yonghawn
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Varying bathymetry significantly affects on the wave propagation and motion response of floating body. Coupled-mode wave theory is adopted to describe the incident wave properly in varying region. The results of waves and motion response are compared to those from numerical wave tank, and the agreement is favorable. The sloped bottom is modeled and its effect on the floating body is discussed.

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Wave-Induced Motions of a Floating Body in a Harbour (파랑에 의한 항만 내 부유체의 운동)

  • Lee Ho-Young;Kwak Young-Ki;Park Jong-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.36-40
    • /
    • 2006
  • As large waves enter a harbor, during their propagation, the motions a floating body are large and if may even be damaged by waves. This phenomenon may be caused by harbor resonance, resulting from large motion at low wave frequency, which is close to the natural frequency of a vessel. In order to calculate the motion of a floating body in a harbor, it is necessary to use the wave forces containing the body-harbor interference. The simulation program to predict the motions of a floating body by waves in a harbor is developed, and this program is based on the method of velocity potential contiuation method proposed by Ijima and Yoshida The calculated results are shown by the variation of wave frequency, wave angle, and the position of a floating body.