• Title/Summary/Keyword: FloWorks

Search Result 5, Processing Time 0.012 seconds

FEM Analysis on the Damage for the Cable of Cabled-suspension Bridges by Fire (화재에 의한 사장교 케이블의 유한요소 해석)

  • Song, Young-Sun;Lee, Byung-Sik;Kim, Hyeong-Joo;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2008
  • Recently, cabled-suspension bridges and suspension bridge have been increasingly built in korea. But such structures were often damaged by fire due to car collison. In this study, the cabled-suspension bridges constructed under the kind of the project of national road aggrandizement are modeled using Solid Works 2007. The COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. The major variables for the analysis are the temperature of the heat source, the distance between the fire-proof bulk head and the heat source, wind velocity, and the height of the end of Stainless steel pipe.

Safety Evalution of on the cable of Extra dosed bridges by fire (화재에 대한 Extra-dosed교 케이블의 안전성 평가)

  • Rhu, Bong-Jo;Song, Young-Sun;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.23-33
    • /
    • 2008
  • Extra dosed bridge among the Cabled-stayed bridges have been increasingly built in korea in recently. But such bridges were often damaged by fire due to car collison. In this study Extra dosed bridges among the cabled-supported bridges are selected to analysis model frequently to be designed and/or constructed in recent and furture in this study. COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. In the case of the constant of the temperature of the heat source, the significant three variables for the analysis are selected for study : (1) the distance between the fire-proof bulk head and the heat source, (2) wind velocity, (3) the height of the end of Stainless steel pipe.

STUDY ON PREDICTION OF THE INDUCED TEMPERATURE IN ENVIRONMENTAL TEST (얇은 평판의 환경시험에서 유도온도 예측에 대한 연구)

  • Lee, J.Y.;Baek, S.H.;Park, S.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.24-32
    • /
    • 2008
  • Environmental test is divided into operation test and storage test. The temperature of storage test is induced temperature which is considered with all sort of the heat source. Induced temperature is the temperature to be adapted to each item and platform and can be induced by computer simulation, laboratory, and real field test. We considered the induced temperature to be associated with solar heat source. In this research. First, we compared the induced temperature which be occurred by one experiment for thin plate in solar test chamber with the other one which be occurred by computer simulation to be SolidWorks 2007 COSMOS FloWorks. After this verification, we showed induced temperature which can be occurred when the test item is stored. Especially, we bring out the induced temperature by applying the ambient temperatures which is presented by MIL-STD-810F and brought out in preceding research.

Numerical Analysis of Thermal Flow for Materials of Combined Weapon System in Large Environmental Tester (대형 환경시험조 내의 복합무기체계 재료에 대한 열유동 수치해석)

  • Kim, Sung-Dae;Ryoo, Seong-Ryoul;Baek, Sang-Hwa;Lee, Jeong-Yong;Park, So-Jin;Kim, Chul-Ju;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3144-3149
    • /
    • 2007
  • A numerical analysis for temperature distribution of four different materials such as iron, silicon, aluminum and PVC has been performed in this study to predict thermal behaviors of combined weapon systems in a large environmental tester. Thus, experimental conditions have been proposed using a calculating software (SolidWorks 2007 COSMOS FloWorks) to prepare for field tests and analyze heat flow inside the environmental tester and temperature distributions of materials. The boundary conditions of the analysis are composed of inlet and outlet conditions of the environmental tester with different pressures and the limit of low temperature of -30$^{\circ}C$. The soaking time of the system in the environmental tester has been calculated by this commercial program in this study to carry out the experiment.

  • PDF

The characteristics of the flow field around canvas kite using the CFD (CFD를 이용한 범포 주위의 유동장 특성)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Park, Seong-Wook;Park, Chang-Doo;Jeong, Eui-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is $10^{\circ},\;20^{\circ}\;and\;30^{\circ}$. In particular, it showed the 20% discrepancy at $40^{\circ}$. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at $10^{\circ}$ and 10% less than those of the tests at $20^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Pressure distribution gradually became stable at $10^{\circ}$. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.