• Title/Summary/Keyword: Flip chips

Search Result 26, Processing Time 0.031 seconds

Detection of Flip-chip Bonding Error Through Edge Size Extraction of X-ray Image (X선 영상의 에지 추출을 통한 플립칩 솔더범프의 접합 형상 오차 검출)

  • Song, Chun-Sam;Cho, Sung-Man;Kim, Joon-Hyun;Kim, Joo-Hyun;Kim, Min-young;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.916-921
    • /
    • 2009
  • The technology to inspect and measure an inner structure of micro parts has become an important tool in the semi-conductor industrial field with the development of automation and precision manufacturing. Especially, the inspection skill on the inside of highly integrated electronic device becomes a key role in detecting defects of a completely assembled product. X-ray inspection technology has been focused as a main method to inspect the inside structure. However, there has been insufficient research done on the customized inspection technology for the flip-chip assembly due to the interior connecting part of flip chip which connects the die and PCB electrically through balls positioned on the die. In this study, therefore, it is implemented to detect shape error of flip chip bonding without damaging chips using an x-ray inspection system. At this time, it is able to monitor the solder bump shape by introducing an edge-extracting algorithm (exponential approximation function) according to the attenuating characteristic and detect shape error compared with CAD data. Additionally, the bonding error of solder bumps is automatically detectable by acquiring numerical size information at the extracted solder bump edges.

No-Holding Partial Scan Test Mmethod for Large VLSI Designs (대규모 집적회로 설계를 위한 무고정 부분 스캔 테스트 방법)

  • 노현철;이동호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, we propose a partial scan test method which can be applied to large VLSI designs. In this method, it is not necessary to hold neither scanned nor unscanned flip-flops during scan in, test application,or scan out. This test method requires almost identical design for testability modification and test wave form when compared to the full scan test method, and the method is applicable to large VLSI chips. The well known FAN algorithm has been modified to devise to sequential ATPG algorithm which is effective for the proposed test method. In addition, a partial scan algorithm which is effective for the proposed test method. In addition, a partial algorithm determined a maximal set of flip-flops which gives high fault coverage when they are unselected. The experimental resutls show that the proposed method allow as large as 20% flip-flops to remain unscanned without much decrease in the full scan fault coverage.

  • PDF

Development of Miniature Quad SAW Filter Bank based on PCB Substrate

  • Lee, Young-Jin;Kim, Chang-Il;Paik, Jong-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the development of a new $5.0{\times}3.2mm$ SAW filter bank which is consist of 12 L, C matching components and 4 SAW bare chips on PCB substrate with CSP technology. We improved the manufacturing cost by removing the ceramic package through direct flip bonding of $LiTaO_3$ SAW bare chip on PCB board after mounting L, C passive element on PCB board. After that we realized the hermitic sealing by laminating the epoxy film. To confirm the confidentiality and durability of the above method, we have obtained the optimum flip bonding & film laminating condition, and figured out material property and structure to secure the durability & moisture proof of PCB board. The newly developed super mini $5.0{\times}3.2mm$ filter bank shows the superior features than those of existing products in confidence, electrical, mechanical characters.

Fabrication Of Ultraviolet LED Light Source Module Of Current Limiting Diode Circuit By Using Flip Chip Micro Soldering (마이크로솔더링을 이용한 정전류다이오드 회로 자외선 LED 광원모듈 제작)

  • Park, Jong-Min;Yu, Soon Jae;Kawan, Anil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.237-240
    • /
    • 2016
  • The improvement of irradiation intensity and irradiation uniformity is essential for large area and high power UVA light source application. In this study, large number of chips bonded by micro soldering technique were driven by low current, and current limiting diodes were configured to supply constant current to parallel circuits consisting of large number of series strings. The dimension of light source module circuit board was $350{\times}90mm^2$ and 16,650 numbers of 385 nm flip chip LEDs were used with a configuration of 90 parallel and 185 series strings. The space between LEDs in parallel and series strings were maintained at 1.9 mm and 1.0 mm distance, respectively. The size of the flip chip was $750{\times}750{\mu}m^2$ were used with contact pads of $260{\times}669{\mu}m^2$ size, and SAC (96.5 Sn/3.0 Ag/0.5 Cu) solder was used for flip chip bonding. The fabricated light source module with 7.5 m A supply current showed temperature rise of $66^{\circ}C$, whereas irradiation was measured to be $300mW/cm^2$. Inaddition, 0.23% variation of the constant current in each series string was demonstrated.

Flexible and Embedded Packaging of Thinned Silicon Chip (초 박형 실리콘 칩을 이용한 유연 패키징 기술 및 집적 회로 삽입형 패키징 기술)

  • 이태희;신규호;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • A flexible packaging scheme, which includes chip packaging, has been developed using a thinned silicon chip. Mechanical characteristics of thinned silicon chips are examined by bending tests and finite element analysis. Thinned silicon chips (t<30 $\mu\textrm{m}$) are fabricated by chemical etching process to avoid possible surface damages on them. And the chips are stacked directly on $Kapton^{Kapton}$film by thermal compressive bonding. The low height difference between the thinned silicon chip and $Kapton^{Kapton}$film allows electroplating for electrical interconnection method. Because the 'Chip' is embedded in the flexible substrate, higher packaging density and wearability can be achieved by maximized usable packaging area.

  • PDF

Recent Progress in Pb-free Solders and Soldering Technology: Fundamentals, Reliability Issues and Applications

  • Kang Sung Kwon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.1-26
    • /
    • 2004
  • The implementation of Pb-free solder technology is making good progress in electronic industry. Further understanding on fundamental issues on Pb-free solders/processes is required to reduce reliability risk factors of Pb-free solder joints. Several reliability issues including thermal fatigue, impact reliability, IMC growth, spalling, void formation are reviewed for Pb-free solder joints. Several applications of Pb-free technology are discussed, such as Pb-free, CBGA, CuCGA, flip chips, and wafer bumping by IMS.

  • PDF

The Effect of Thermal Concentration in Thermal Chips

  • Choo, Kyo-Sung;Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2449-2452
    • /
    • 2007
  • Hot spots on thin wafers of IC packages are becoming important issues in thermal and electrical engineering fields. To investigate these hot spots, we developed a Diode Temperature Sensor Array (DTSA) that consists of an array of 32 ${\times}$32 diodes (1,024 diodes) in a 8 mm ${\times}$ 8 mm surface area. To know specifically the hot spot temperature which is affected by the chip thickness and a generated power, we made the DTSA chips, which have 21.5 ${\mu}m$, 31 ${\mu}m$, 42 ${\mu}m$, 100 ${\mu}m$, 200 ${\mu}m$, and 400 ${\mu}m$ thickness using the CMP process. And we conducted the experiment using various heater power conditions (0.2 W, 0.3 W, 0.4 W, 0.5 W). In order to validate experimental results, we performed a numerical simulation. Errors between experimental results and numerical data are less than 4%. Finally, we proposed a correlation for the hot spot temperature as a function of the generated power and the wafer thickness based on the results of the experiment. This correlation can give an easy estimate of the hot spot temperature for flip chip packaging when the wafer thickness and the generated power are given.

  • PDF

Development of a Hot-Embossing Process using Ceramic Glass Molds for Polymer Micro Structures (글라스 주형을 이용한 폴리머 미세 형상 핫-엠보싱 공정 연구)

  • Kim, Joo-Han;Shin, Ki-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.168-174
    • /
    • 2007
  • A ceramic glass mold was developed for micro hot-embossing and replicated polymer parts are fabricated. The glass-ceramic micro mold could be fabricated with a laser process and a wet etching process and the fabrication time could be saved a lot. Various polymer micro structures can be obtained by hot-embossing. The process parameters such as ho-embossing temperatures or pressures were investigated and optimized. This process can be applied for fabrication of micro structures for flip-chips or micro fluidic channels for bio-engineering. The advantages and disadvantages of this process are discussed, too.

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong;Ro, Duckhoon;Kang, Myounggon;Chang, Ik Joon;Lee, Hyung-Min
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.3
    • /
    • pp.81-87
    • /
    • 2020
  • An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.