• Title/Summary/Keyword: Flight vehicles

Search Result 305, Processing Time 0.026 seconds

An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter (전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구)

  • Jung Seul;Park Ju-Kwang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

CFD - Mature Technology?

  • Kwak, Do-Chan
    • Proceedings of the KSME Conference
    • /
    • 2005.11a
    • /
    • pp.257-261
    • /
    • 2005
  • Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This Is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  • PDF

Design of an Initial Fine Alignment Algorithm for Satellite Launch Vehicles

  • Song, Eun-Jung;Roh, Woong-Rae;Kim, Jeong-Yong;Oh, Jun-Seok;Park, Jung-Ju;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • In this paper, an initial fine alignment algorithm, which is developed for the strap-down inertial navigation systems of satellite launch vehicles, is considered. For fast and accurate alignment, a simple closed-loop estimation algorithm using a proportional-integral controller is introduced. Through computer simulation for the sway condition in the launch pad, it is shown that a simple filter structure can guarantee fast computational speed that is adequate for real-time implementation as well as the required alignment accuracy and robustness. In addition, its implementation results are presented for the Naro-1 flight test.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Development of 100, 250 N Commercial $H_2O_2$ Monopropellant Thruster for Space Launch Vehicles (발사체 자세제어를 위한 100, 250 N 급 상용 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.19-22
    • /
    • 2009
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at attitude control of space launch vehicles were presented in this paper. Flight model thrusters were designed after two reactors for 100, 250 Newton were conformed at engineering model. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times.

  • PDF

Aeroassisted Orbital Maneuvering in a Worst-Case Atmosphere (최악의 대기 조건 하의 공기조력 비행선 운전)

  • Lee, Byoungsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.936-941
    • /
    • 2000
  • Advanced space transportation systems, such as the National Aerospace Plane or an Orbital Transfer Vehicle, have atmospheric maneuvering capabilities. For such vehicles the use of aeroassisted orbital transfer from a high Earth orbit to a low Earth orbit, with unpowered flight in the atmosphere, has the potential for significant fuel savings compared to exoatmospheric Hohmann transfer. However, to exploit the fuel savings that can be achieved by using the Earths atmosphere to reduce the vehicles energy, a guidance law is required, and it must be able to handle large unpredictable fluctuations in atmospheric density, on the order of ${\pm}$50% relative to the 1962 US Standard Atmosphere. In this paper aeroassisted orbital transfer is considered as a differential game, with Nature controlling the atmosphere density to yield a worst case (min-max fuel required) atmosphere, from which the guaranteed playable set boundary are achieved. Inside the playable set, it is guaranteed that the vehicle achieves the optimal atmospheric exit condition for the minimum fuel consumption regardless of the atmospheric density variations.

  • PDF

A Case Study on Fuel Supply and Cooling Systems of High-Speed Vehicles (고속 비행체 연료공급 및 냉각계통 사례분석)

  • Choi, Seyoung;Park, Sooyong;Choi, Hyunkyung;Jun, Pilsun;Park, Jeongbae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In high-speed vehicle, selection of fuel, configuration of components and cooling system are required to solve the heating issue by aerodynamic heating and inner combustion process. This subsystem consists of fuel tank, supply pump, various control valve, heat exchanger, including reactor, connecting line, adiabatic structures and insulations. In this paper, applicable fuel property is considered at flight characteristic of hypersonic vehicles. In this regard, current state of fuel/cooling system technology is identified.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.