• Title/Summary/Keyword: Flight accident

Search Result 115, Processing Time 0.033 seconds

A Study on Prevention as result of Controlled-Flight-Into-Terrain Accident - Focusing on Guam accident, Mokpo accident, Gimhae accident (Controlled-Flight-Into-Terrain 항공 사고 예방에 관한 연구 - 괌사고, 목포사고, 김해사고 중심으로 -)

  • Byeon, Soon-Cheol;Song, Byung-Heum;Lim, Se-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • The purpose of this study is leading to prevent the major causes of commercial-aviation fatalities about controlled-flight-into-terrain(CFIT) in approach-and-landing accidents. The paper of major analysis for controlled flight into terrain(CFIT) was Guam accident, Mokpo accident and Gimhae accident in commercial transport-aircraft accidents from 1993 through 2002. CFIT occurs when an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior awareness by the crew. This type of accident can occur during most phases of flight, but CFIT is more common during the approach-and-landing phase. Ninety-five percent of the Guam accident, Mokpo accident, and Gimhae accident where weather was known involved IMC, fog, and rain. The paper believed that prevention for CFIT accident was education and training for flying crew and upgrade for equipment such as EGPWS, and need more research for professional organizations of airlines, and accomplishing precision approaches should be a high priority.

  • PDF

Accident Analysis & Lessons Learned of B737MAX JT610 from a Flight Control System Design Perspective (비행제어시스템 설계 관점의 B737MAX JT610편 사고분석과 교훈)

  • Moon, Jung-Ho;Cho, Hwankee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.106-114
    • /
    • 2020
  • The Lion Air JT610 accident in Indonesia in October 2018, along with the Ethiopian Airline ET302 accident in March 2019, is an significant aircraft accident that detects defects of the B737MAX aircraft. Shortly after the accident, the FAA prohibited operation of the aircraft. This action has affected the market environment of airlines and aircraft manufacturers around the world. In October 2019, Indonesian Traffic Safety Committee released an accident investigation report for Lion Air JT610, which concluded that the causes of the accident were MCAS design defects, lack of education and training, and errors in the repair process. This paper summarizes the flight control system of the B737MAX aircraft, the causes of the accident based on the final accident investigation report, and provides considerations for aircraft design and retrofit.

The Study of Accident Prevention through Controlled Flight Into Terrain Accident (Controlled Flight Into Terrain에 의한 항공기 사고예방 대책에 관한 연구)

  • Byeon, Soon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.497-506
    • /
    • 2008
  • The purpose of this study was is leading landmark efforts to prevent the major causes of commercial-aviation fatalities about controlled flight into terrain(CFIT) in approach-and-landing accidents. The paper of major analysis for controlled flight into terrain(CFIT) was Guam accident, Mokpo accident and Gimhae accident in commercial transport-aircraft accidents from 1993 through 2002.CFIT occurs when an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior awareness by the crew. This type of accident can occur during most phases of flight, but CFIT is more common during the approach-and-landing phase.The paper believed that prevention for CFIT accident was education and training for flying crew and upgrade for equipment such as EGPWS, and need more research for professional organizations of airlines.

A Method of Deriving UAS Flight Recording System Parameters for Aviation Accident and Incident Investigation (항공사고 및 준사고 조사를 위한 UAS 비행 기록 시스템 파라미터 도출 방안)

  • Keon-hee Lee;Joong-yoon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • 'UAS flight recording system' is a system that is mounted on an unmanned aircraft system consisting of various components and records flight-related data. The data recorded by this system should be used for aviation accident and incident investigations to prevent similar accidents. In particular, for the category of UAS with high operating risk, safety devices close to that of manned aircraft are required, and it is urgent to develop flight recording systems reflecting the characteristics of the UAS to secure airworthiness. This paper highlights the need for UAS flight recording systems for aviation accident and incident investigations and seek a method to derive flight recording system parameters for 'Certified Category' with high operational risk. To this end, Inter-City UAM was used as a concrete use case, and the process of approaching system parameters was devised by assuming accident occurrences and hazards from mission profiles and scenarios. As a result of the study, it was confirmed that parameters could be derived through this process.

A meta-analytic study on flight data monitor of pilot's flight deviation parameters by flight simulation (비행시뮬레이션을 통한 비행규격 이탈의 메타분석)

  • Sin, Hyon-Sam;Song, Byung-Heum;Lim, Se-Hoon;Byeon, Soon-Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.63-71
    • /
    • 2008
  • This study was conducted with respect to the causal factors revealed through the investigation of the recent airlines aircraft crash accident which occurred while aircraft was on the climb-out or on the final approach. This study also highlighted the importance of flight deviation and exceedance occurrences in consideration of Flight Operational Quality Assurance Program(FOQA). Twenty airline pilots participated in the flight experiment to perform ten(10) sets of simulated approaches and landings. As a result, Twelve(12) kinds of deviation events were discovered. In this respect, The FOQA program must be fully implemented to prevent any flight safety incident under the auspices of the Korea domestic aviation community as well.

A modified output error method and its application on an air accident

  • Imado, Fumiaki;Koyama, Yasumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.169-172
    • /
    • 1996
  • A modified output error method developed by the authors are presented, and an example of its application on an air accident is shown. In order to obtain the aerodynamic coefficients of an aircraft, the maximum likelihood method and the output error method are often employee However, in the case of an air accident, there is only one flight data available. The newly devised modified output error method by authors seems to have shown fine performance. By employing this method and processing the flight data, unstational aerodynamic coefficients are obtained. The contradiction between the recorded flight data and the circumstantial evidence was reasonably explained.

  • PDF

A Study on Improvement of the Individual Pilot Quality Control System for Flight Safety (비행안전을 고려한 조종사 개인별 자질관리(IPQC)제도의 개선에 관한 연구)

  • 윤봉수;이성희
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.53-72
    • /
    • 1999
  • IPQC system was introduced for the flight safety at the age of scientific safety management in the 1980s. In spite of performing this system, aircraft accidents caused by human factors, which were above 70% among all flight accident factors, have not been reduced. Accordingly, throughout this paper I analyzed the aircraft accident factors by means of a literature study and a pilot survey. Then, based on the notion of TQC(Total Quality Control), I hierarchically classified Individual Quality into Capacity Management, Safety Management, and General Management and did the low-ranked management factors as well. AHP (Analytic Hierarchy Process), one of the scientific management methods, was used for estimating the relative importance of Individual Quality Control factors and the heavy aircraft accident causes over the last 20 years were analyzed according to the flight ranks. Based on the comparative analysis of results derived above, an IPQC model as flight ranks is established. In short, according to this newly suggested model we can obtain the maximum flight safety with the preventive actions against aircraft accidents caused by human factors and by improving the operation effect under the reasonable pilot management.

  • PDF

Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea (국내 헬리콥터 조종사 인적오류 사고 분류 및 분석)

  • Yu, TaeJung;Kwon, YoungGuk;Song, Byeong-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

A Study on the Optimal Flight Time According to the Amount of Fatigue (피로누적에 따른 최적 비행시간 산출에 관한 연구)

  • 이승훈;윤봉수
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.1
    • /
    • pp.41-57
    • /
    • 1998
  • Since the aircraft has a property of moving in the three-dimensional space, it may cause personally and financially critical damage in the case of an accident. Among the causes of aircraft accident, human factor has occupied about 70% of all accidents. Specially, fatigue among human's problems has been studied earlier than any other factor. Fatigue has been the cause of 75% of accidents that are related to human factor. So many studies have been conducted. But the direction of these studies mainly attach importance to the sleep loss and circadian rhythm. Limitation for flight time of ICAO is 8 hours per day, civil airlines in domestic line also adopt the limitation. But this rule is not based on human's performance but compromise between labor and management. The long-haul flight brings about a mental block to pilot. This mental block decreases performance of pilot and loses a lot of important information. So this may cause many accidents. This paper is to offer optimal flight time according to the amount of fatigue due to increasing flight time. The optimal flight time is searched through the field experiment. The experiment has adopted two methods. One is to examine pilot's objective fatigue accumulation rate through the critical fusion frequency, and another is to investigate pilot's subjective fatigue feeling through the fatigue subjective symptoms investigation table.

  • PDF