• 제목/요약/키워드: Flight Stability

검색결과 343건 처리시간 0.026초

소형 커나드 항공기의 가로안정성 향상에 관한 연구 (A Study on the Lateral Stability Improvement of a Small Canard Aircraft)

  • 황명신;김영철;은희봉;박욱제;최원종;성기정
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.45-51
    • /
    • 2003
  • 본 논문에서는 소형 커나드 항공기인 Velocity-173의 가로안정성을 향상시키기 위한 방법에 대하여 연구하였다. Velocity-173의 세로안정성은 매우 우수한 반면, 가로안정성은 상대적으로 나쁘다. 가로안정성을 향상시키기 위해 수직미익의 면적을 증가시키는 작은 패널을 설계 및 제작하였다. 패널 설계 과정에서 AAA를 이용하여 패널 부착으로 인한 가로안정성의 변화를 예측하였다. 패널 부착 효과를 검증하기 위해 비행시험이 수행되었다. 또한, 비행시험 데이터로부터 안정/조종 미계수를 추출하기 위하여 최대공산추정법을 이용하였다. 본 연구를 통해 수직미익 아래에 부착된 패널의 효과를 확인할 수 있었다.

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

전환제어법칙 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Switching Control Law)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

다비행체 편대비행을 위한 유도법칙 및 시뮬레이션에 관한 연구 (A Study on Guidance Law Design and Simulation of Multiple UAV Formation Flying)

  • 노태수;전경언
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.859-866
    • /
    • 2008
  • 본 논문에서는 다수 비행체의 편대 비행 시 상호 기하학적 관계 유지에 필요한 유도 법칙과 비선형 시뮬레이션 결과를 제시하였다. 편대 내의 각 비행체는 편대 Leader를 제외하고 모두 Leader와 Follower의 역할을 동시에 맡으며, Leader에 의한 명령은 모든 Follower에게 분배되고 따라서 편대를 이루는 모든 비행체들의 동시기동비행(Synchronized Flight)을 가능하게 한다. 편대 비행 유도 법칙은 가까운 미래 시각에 예상되는 기하학적 오차 그리고 Lyapunov 안정성 이론에 근거하여 도출하였고, 정찰과 감시 임무 예제에 관한 고정밀 비선형 시뮬레이션 결과를 통하여 제안된 유도 법칙의 성능을 검증하였다

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

소형비행기 가로안정성 향상 및 적합성검증 방안 연구 (Study on the lateral stability improvement and compliance verification)

  • 최주원;김찬조;정훈화;김진수
    • 항공우주시스템공학회지
    • /
    • 제7권2호
    • /
    • pp.23-28
    • /
    • 2013
  • This is a research on the method of how to improve lateral stability for the small general aviation airplane to meet the FAR part 23 requirements. This research is based on the experience of certification flight tests of KC-100 airplane for Korea first type certification. KAS/FAR Part 23.177 is the static lateral and directional stability requirement. And, 23.177(b) requires to show the tendency to raise the low wing in steady heading side slip maneuver. However, it is very difficult for the low wing to be raised at the low speed during the steady heading side slip maneuver. So, the requirement allows not be negative at the $1.2V_{S1}$ speed and takeoff configuration. (static stability requirement requires low wing picked up at any speed except $1.2V_{S1}$ speed and takeoff configuration) In this paper, the static lateral stability requirements and the lessons & learned of KC-100 airplane certification flight test results are shown.

비행제어시스템 설계 및 검증 절차 (Flight Control System Design and Verification Process)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.824-836
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, flight control systems are necessary to stabilize an unstable aircraft, and provides adequate handling qualities and achieve performance enhancements. Standard FCSDVP (Flight Control System Design and Verification Process) is provided to reduce development period of the flight control system. In addition, if this process is employed in developing flight control system, it reduces the trial and error for development and verification of flight control system. This paper addresses the flight control system design and verification process for the RSS aircraft utilizing design goal based on military specifications, linear and nonlinear system design and verification based on universal software, handling quality test based on HILS(Hardware In-the-Loop Simulator) environment, and ground and flight test results to verify aircraft dynamic flight responses.

전진 비행시 헬리콥터의 동적 미계수에 관한 연구 (A study on the helicopter dynamic stability derivatives in forward flight)

  • 홍천식;황명신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.153-158
    • /
    • 1992
  • The purpose of this paper is to calculate the dynamic derivatives of single rotor Helicopter in forward flight. From trim condition, the equation of motion is derived, and we can calculate the dynamic dervatives. The results were compared with flight test data. The phase angle and stick displacement are obtained and compared at the trim condition.

  • PDF

축소형 틸트로터 무인기의 안전줄 호버 시험 (Tethered Hover Test for Small Scaled Tilt-rotor UAV)

  • 박범진;유창선;장성호;최성욱;구삼옥;강영신
    • 한국항공운항학회지
    • /
    • 제15권4호
    • /
    • pp.9-16
    • /
    • 2007
  • Tilt rotor aircraft can take off and land vertically and cruise faster than any other helicopter. A scaled flight demonstration model of a tilt rotor aircraft has been developed by KARI. Because the flight characteristics of tilt rotor are not well known, the developed scaled model would be helpful to evaluate flight control algorithm of a full scale aircraft. The tethered hover test has been performed in order to improve hover flight characteristics of tilt rotor aircraft prior to flight test of the small scaled model. During the tethered hover test, the performance of rotor speed governor, rate SAS (Stability Augmentation System) and control surface mixers have been evaluated. We expect that the results of real flight hover test would be quite same as tethered hover test. Therefore the tethered hover test results will reduce the risk of flight test properly by fixing some of hidden problems which might occur during the flight test. This paper presents the results of tethered hover test in detail and shows how it could be final ground test before flight test. The control mixer gain and rate SAS feedback gains were modified in order to get higher controllability and stability during the tethered hover flight. The rotor governor showed that it could keep rotor RPM constant with very small deviation even during severe pilot collective input change. The tethered hover test results gave pilot and engineers confirmation and experience about the scheduled flight test.

  • PDF

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF