• Title/Summary/Keyword: Flight Stability

Search Result 343, Processing Time 0.026 seconds

Design of a Variable Stability Flight Control System

  • Park, Sung-Su;Ko, Joon-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • A design objective for variable stability flight control system is to develop a controller of in-flight simulation capability that forces the aircraft being flown to follow the dynamics of other aircraft. This paper presents a model-following variable stability control system (VSS) for in-flight simulation which consists of feedforward and feedback control laws, the aircraft dynamic model to be simulated, and switching and fader logics to reduce the transient effect between two aircraft dynamics. The separate design techniques for feedforward and feedback control law proposals are based on model matching and augmented linear quadratic (LQ) techniques. The system allows pilots to select and engage VSS mode, and when deselected, the aircraft reverts to the baseline flight control system. Both the baseline flight control laws and VSS control laws are computed continuously during flight. Initialization of the state values are necessary to prevent instability, since VSS control laws have integrators and filters in longitudinal, and lateral/directional axes. This paper demonstrates and validates the effectiveness and quality of VSS with F-16 models embedded in T-50 in-flight simulation aircraft.

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

Lateral-Directional Dynamic Inversion Control Applied to Supersonic Trainer (초음속 고등훈련기 가로-방향축 모델역변환 비행제어법칙 설계)

  • Kim, Chongsup;Ji, Changho;Cho, In-Je
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2014
  • The modern version of aircrafts is allowed to guarantee the superior handing qualities within the entire flight envelope by imposing the adequate stability and flying qualities on a target aircraft through the various techniques of flight control law design. Generally, the flight control law of the aircraft in service applies the various techniques of the verified control algorithm, such as dynamic inversion and eigenstructure assignment. The supersonic trainer employs the RSS(Relaxed Static Stability) concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system of both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. In this paper, the lateral-directional flight control law is designed by applying dynamic inversion control technique as a different method from the current supersonic trainer control technique, where the roll rate command system is designed at the lateral axis for the rapid response characteristics, and the sideslip command system is adopted at the directional axis for stability augmentation. The dynamic inversion of a simple 1st order model is applied. And this designed flight control law is confirmed to satisfy the requirement presented from the military specification. This study is expected to contribute to design the flight control law of KF-X(Korean Fighter eXperimental) which will proceed into the full-scale development in the near future.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

A study on the Lateral Stability of a Canard Airplane Using In-Flight Real-Time Parameter Estimation Techniques (비행중 실시간 파라미터 추정기법을 이용한 커나드 비행기의 가로안정성에 관한 연구)

  • Park, Wook-Je;Noh, Yang-Soo;Choi, Jin-Won;Moon, Jung-Ho;Hwang, Myoung-Shin;Seong, Kee-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • The Purpose of this paper is to obtain the lateral-directional controllability and stability derivatives of the Velocity-173 from the flight test data and to simulate motion of the aircraft by using In-flight Real-Time Parameter Estimation Techniques. In this paper, the results of the In-Flight Real-Time parameter Estimation Techniques are compared with the results of the Advanced Aircraft Analysis. As a result, Estimation by using In-Flight Real-Time Parameter Estimation Techniques can be done rapidly and their results are reliable.

Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer

  • Kim, Chong-Sup;Hur, Gi-Bong;Hwang, Byung-Moon;Cho, In-Je;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.32-45
    • /
    • 2007
  • The T-50 advanced supersonic jet trainer employs the Relaxed Static Stability (RSS) concept to improve the aerodynamic performance while the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 flight control laws employ a proportional-plus-integral type controller based on a dynamic inversion method in longitudinal axis and a proportional type controller based on a blended roll system with simple roll rate feedback and beta-betadot feedback system. These control laws are verified by flight tests with various maneuver set flight envelopes and the control laws are updated to resolve flight test issues. This paper describes several concepts of flight control laws used in T-50 to resolve those flight test issues. Control laws for solving the roll-off problem during pitch maneuver in asymmetric loading configurations, improving the departure resistance in negative angle of attack conditions and enhancing the fine tracking performance in air-to-air tracking maneuvers are described with flight test data.

Parameter Identification and Simulation of Light Aircraft Based on Flight Test (비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션)

  • 황명신;이정훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Estimation and Validation of Longitudinal Stability/Control Derivatives for the Flight Training Device of a Light Aircraft

  • Lee, Jung Hoon
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • The longitudinal flight parameters of a light airplane are estimated from flight test data by use of the output error method. The reliability of the flight test measurement is examined in engineering judgment, scatter and Cramer-Rao bound, which turns out to be satisfactory with minor defects. Estimated parameter values are validated by comparing the simulated responses with the ones from actual flight tests. The FTD(Flight Training Device) of a light airplane turns out to satisfy the qualification of FAA Level 5 FTD in longitudinal motion. All the necessary practices for generation of high-fidelity data in longitudinal motion of a light aircraft are successfully performed in this study.