• Title/Summary/Keyword: Flight Simulation

Search Result 879, Processing Time 0.024 seconds

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition (그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석)

  • Yoo, Jae-Hun;Kim, Chang Kee;Choi, Yoon Jeong;Lim, Ye Seul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.

SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with SMP Standard

  • Koo, Cheol-Hea;Lee, Hoon-Hee;Cheon, Yee-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.

A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV (UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템)

  • Kim, Jae-Wan;Yoon, Jun-Yong;Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Design of Flight Control System for KARI Unmanned Airship (50m급 중고도 무인 비행선의 자동비행시스템 설계)

  • 김성필;주광혁;안이기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The flight control system designed for an unmanned airship, which is under development by KARI, is in reduced. First, the dynamic characteristics of the airship are addressed, which are fairly different from those of the nominal aircraft. In order to implement autonomous flight for the unmanned airship, flight control logic is designed including autopilot and guidance law. The autopilot is designed under consideration of the velocity region of the unmanned airship. The guidance laws are implemented in main operational modes such as point navigation, station keeping and spiral up/down for emergency return. Their simulation results are also presented in order to validate performances of the flight control system.

Design of a Track Guidance Algorithm for Formation Flight of UAVs (무인기의 편대비행을 위한 트랙유도 알고리즘 설계)

  • Lee, Dongwoo;Lee, Jaehyun;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper presents a modified track guidance algorithm for formation flight of multiple UAVs. The suggested guidance algorithm is the spatial version of the first order dynamic characteristics for a time-dependent system so the algorithm is able to generate a path without overshoot to track the desired line. A crucial design parameter is a spatial constant that controls the shape of the convergence to an assigned flight path similarly to a time constant. Reference flight trajectories are designed based on a two-dimensional vehicle model, and the performance of the proposed guidance law is verified by numerical simulation using rigid body UAV dynamics with MATLAB/Simulink Aerosim Blockset.

ADAPT: A Predictive Cognitive Model of Piloting Skill (DAPT: 조종 기술의 예측적 인지 모델)

  • Sohn, Young-Woo;Kim, Kyung-Tae;Chang, Su-Wong;Kim, Do-Hyung
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.9-13
    • /
    • 2005
  • A comprehension-based computational model of pilot action planning called ADAPT is presented to model pilot performance in a flight simulation context. Individual pilots were asked to execute a series of flight maneuvers using a flight simulator, and their eye-scanning, control movements, and flight performance were recorded in a time-synched database. Computational models of each of the 25 individual pilots were constructed, and the individual models simulated execution of the same flight maneuvers performed by human pilots. The time-synched eye-scanning, control movements, and flight performance of individual pilots and their respective models were compared to test ADAPT's predictive validity.

  • PDF

Simulation of the control force of the light aircraft using flight test data (비행시험 자료를 이용한 경항공기의 조종력 시뮬레이션)

  • 김정환;황명신;이정훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.203-206
    • /
    • 1996
  • The purpose of this paper is to find how to determine the parameters of the basic control system design such as hinge moment coefficients and to display the controllability of the ChangCong-91. Since the estimation from the flight test of real aircraft is the most reliable, we performed the flight test of ChangGong-91 to get the various parameters such as velocity, height, control force, control surface deflection, 3 axis acceleration, 3 axis angular rate, pitch angle, angle of attack temperature and so on. We recorded the flight test data in VHS tapes and stored them to personal computer using A/D(analog to digital) converter. Flight test was done in various conditions, and the acquired data was processed with parameter identification method such as least square method. These data will be utilized for the development of Autopilot System design and Control Loading System design.

  • PDF

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

Design of a Flight Envelope Protection System Using a Dynamic Trim Algorithm

  • Shin, Ho-Hyun;Lee, Sang-Hyun;Kim, You-Dan;Kim, Eung-Tae;Sung, Ki-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.241-251
    • /
    • 2011
  • Most large commercial aircrafts and high performance military aircrafts use fly-by-wire (FBW) or fly-by-light systems to improve their controllability, comfort, and safety. A flight envelope protection technique is used with flight control systems utilizing the FBW technique. Such flight envelope protection systems prevent these aircraft from exceeding the structural/aerodynamic limits and control their surface limits. This is accomplished by predicting the values of the future state variables and adaptively compensating the control action. In this study, the conventional dynamic trim algorithm of the flight envelope protection is modified to increase the method accuracy and to handle cases with multiple variables. Numerical simulation is also performed to verify the performance of the proposed method.