• Title/Summary/Keyword: Flight Phase

Search Result 329, Processing Time 0.22 seconds

Model-Based Approach to Flight Test System Development to Cope with Demand for Simultaneous Guided Missile Flight Tests (동시다발적인 유도무기 비행시험 수요에 대응하기 위한 모델기반 비행시험 시스템 개발)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.268-277
    • /
    • 2019
  • Flight test systems should monitor various conditions in real time during flight tests and take safety measures in an emergency. The importance of ensuring test safety increases in more complicated and wider test environments. Also, due to the transition of wartime operational authority, many guided missile systems must be developed simultaneously. Early deployment and budget reduction by shortening the development and T&E periods are also necessary. Consequently, the risk of flight tests under the circumstance of inefficient test resources is increasing. To address this deficiency, a flight test system model using SysML was proposed in this study. The method of designing and verifying the test system is based on the agile shift left testing methodology of advanced T&E labs and utilizing a system reference model in the aerospace field. Through modeling and simulation analysis, early identification and correction of faults resulting from inconsistent test requirements can mitigate the risk of delays during the T&E phase of flight tests. Also, because the flight test system model was constructed using SysML, it can be applied to test various guided missile systems.

Thermal Vacuum Test of the Phase Change Material Thermal Control Unit Loaded on the Satellite Flight Model and Thermal Model Correlation with Test Results (위성에 탑재된 상변화물질 열제어장치 비행모델의 열진공시험 및 이를 통한 열해석 모델 보정)

  • Cho, Yeon;Kim, Taig Young;Seo, Joung-Ki;Jang, Tae Seong;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.729-737
    • /
    • 2022
  • Melting and icing process of the PCMTCU(Phase Change Material Thermal Control Unit) installed on the NEXTSat-2, which is scheduled to be launched in the second half, was investigated through the results of satellite-level TVT(Thermal Vacuum Test). As a result of the test, it was confirmed that the latent heat of PCM contributes to the temperature stabilization of the heating components. The thermal model for numerical analysis of the PCMTCU was correlated to acquire a reasonable degree of accuracy using the collected temperature measurements during TVT. The periodic temperature variation of the PCMTCU in normal on-orbit operation was predicted with the correlated thermal model, and the quantitative contribution of the PCM on the thermal energy management was evaluated with the liquid fraction. It will receive flight telemetry from the NEXTSat-2 after the launch, and complete the space verification of the PCMTCU.

Estimation of Safety Area for Intercept Debris by Using Modeling and Simulation (탄도탄 요격시험 안전구역 산출을 위한 모델링 및 시뮬레이션)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The ballistic missile threat continues to increase with the proliferation of missile technology. In response to this threat, many kinds of interceptors have been emphasized over the years. For development of interceptor, systematic flight tests are essential. Flight tests provide valuable data that can be used to verify performance and confirm the technological progress of ballistic missile defense system including interceptor. However, during flight tests, civilians near the test region could be risk due to a lot of intercept debris. For this reason, reliable estimate of safety area for the flight tests should be preceded. In this study, prediction of safety area is performed through modeling and simulation. Firstly, behaviors of ballistic missile and interceptor are simulated for those entire phase including interception to obtain the relative intercept velocity and the relative impact angle. By using obtained data of kinetic energy, the fragment ejection velocity is calculated and fragment trajectories are simulated by considering drag, gravity and wind effects. Based on the debris field formation and hazard evaluation of debris, final safety area is calculated.

Helicopter FBW Flight Control Law Design for the Handling Quality Performance (비행조종성능을 위한 헬리콥터 FBW 비행제어법칙 설계)

  • Choi, In-Ho;Kim, Eung-Tai;Hyun, Jung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1561-1567
    • /
    • 2013
  • This paper is regarding the helicopter flight control law design for the handling quality performance. MIL-F-83300 and ADS-33E specification is used of the helicopter flight handling quality and to meet these requirements, ACAH type controller is required. This paper described the ACAH type controller design and performance evaluations. Helicopter dynamics first developed as nonlinear dynamics including rotor dynamics and then linear model was extracted from hovering to forward flight mode using trim condition. Control law used the model following to meet the handling qualities, the simple inverse model as feed forward gain, decoupling logic and phase model to decouple the axes, and linear model to calculate the coefficients. Handling quality evaluation used the matlab based Conduit tool and verified that Level 1 requirement is satisfied.

Analysis of the Flight Trajectory Characteristics of North Korea SLBM (북한 SLBM의 비행특성 해석)

  • Lee, Kyoung-Haing;Seo, Hyeong-Pil;Kwon, Yong-Soo;Kim, Jiwon
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • This research focuses on analysis of the flight trajectory characteristics of SLBM (Submarine Launched Ballistic Missile) of North Korea. Recently, North Korea tested launching of SLBM which is threatening international security. Also it is known that North Korea had possessed the technologies about SLBM since they disassembled submarines out of commission of the former Soviet Union. If the development of the SLBM of North Korea is completed, it should be affected as asymmetric threat to South Korea. Therefore, for active respondence to these threat, it is essential to analyze the SLBM systematically. In this point of view, this work made a SLBM flight model and simulated. In addition, we controled flight trajectories according to adjusting loft angle and described their characteristics. The sea-based ballistic missile defense system is required for an effective response to the flight trajectory of the SLBM from mid-course to terminal phase.

Analysis on Trajectory and Impact Point Dispersion of Test Launch Vehicle (시험발사체 궤적 및 낙하점 분산 분석)

  • Song, Eun-Jung;Cho, Sangbum;Choi, Jiyoung;Lee, Sang-il;Kim, Younghoon;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.681-688
    • /
    • 2021
  • This paper considers the trajectory and impact point dispersion analysis of the test launch vehicle (TLV). The analysis, which performed before and after its flight test on November 28, 2018, is described and verified by comparing with the flight test results. The six degree-offreedom (DOF) simulation is used to compute the dispersion of the trajectory, attitude, and impact point, where the launch vehicle performance variations and wind effects during the atmospheric phase are included. The impact area to guarantee the flight safety is determined using the results of the dispersion analysis. The flight test results confirm that the safe flight of TLV is performed within the predicted dispersion boundary.

A Study for Enhancing Efficiency of STAR and IAP for the Prospect of Aircraft Descent Performance and FMS Descent Guidance Information (항공기 강하 성능과 FMS 강하 정보에 기반한 표준계기도착절차와 계기접근절차의 운항 효율성 향상에 관한 연구)

  • Choongsub Lee;Hyeonjin Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.79-91
    • /
    • 2023
  • In response to the recent surge in aviation demand, major airports and aviation authorities continue to make efforts to formulate arrival and approach procedures that take into account efficient aircraft separation, noise and environmental issues of carbon (CO2) emissions. In order to ensure efficient traffic control and environmental issues, as a result, a new concept Trombone, Point Merge, etc. have been introduced and widely used in the domestic airspace. However, these new concept procedures which do not properly reflect the characteristics of the aircraft operation performance and the FMS vertical descent guidance hinder flight efficiency as well as bring in turn negative factors such as level-off flight and the use of drag device at the busiest phase of the flight descent operation, like the Continuous Descent Operation (CDO). Accordingly, throughout modification the current Standard Terminal Arrival Route (STAR) and Instrument Approach Procedure(IAP) that reflect the aircraft descent performance and the FMS guidance, the flight operation safety and efficiency is expected to be improved eventually. We herewith analyze and propose the way of improving flight efficiency in the arrival operation procedure by supplementary modification which consequently contribute to the aviation industry international competitiveness.

Optimization-Based Determination of Apollo Guidance Law Parameters for Korean Lunar Lander (달착륙 임무를 위한 최적화 기반 아폴로 유도 법칙 파라미터 선정)

  • Jo, Byeong-Un;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.662-670
    • /
    • 2017
  • This paper proposes an optimization-based procedure to determine the parameters of the Apollo guidance law for Korean lunar lander mission. A lunar landing mission is formulated as a trajectory optimization problem to minimize the fuel consumption and the reference trajectory for the lander is obtained by solving the problem in the pre-flight phase. Some parameters of the Apollo guidance, which are coefficients of the polynomial used to define the guidance command, are selected based on the reference trajectory obtained in the pre-flight phase. A case study for the landing guidance of Korean lunar lander mission using the proposed procedure is conducted to demonstrate its effectiveness.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.