• Title/Summary/Keyword: Flight Phase

Search Result 329, Processing Time 0.029 seconds

The Kinematic analysis of the third Hurdling motions of The 110m Hurdles Elite (엘리트 110m 허들선수의 세 번째 허들링 동작에 관한 운동학적 분석)

  • Lee, Jung-Ho;Park, Young-Jin;Ryu, Jae-Kyun;Kim, Jong-In
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • The purposes of this study were to compare and analyze the world elite hurdler and the domestic hurdler 3-D kinematic and kinetic techniques about hurdling motion in the 110m hurdles. After analyzing variables in the 110m hurdle run the following conclusions were obtained; In a preparation phase, the domestic hurdler came out running more 0.13m then world elite hurdler from grounding to taking off in the height of center of gravity and the distance by 1.04m. In a flight phase, the domestic hurdler came out taking off 0.33m less then world elite hurdler from taking off to flight peak in the height of center of gravity and the distance by 1.63m. In a flight peak phase, domestic hurdler came out landing more 0.37m then world elite hurdler by 159m. More over, during the hurdling, the horizontal velocity of center of gravity came out decreasing from taking off to landing with domestic hurdler by 0.75m/s. the take off percentage and the landing percentage is 53:47. In a acceleration phase, domestic hurdler came out going slower 0.54m/s than world elite hurdler from landing in the horizontal velocity of center of gravity by 8.78m/s.

On-orbit Thermal Behavior of KOMPSAT Liquid-Monopropellant Hydrazine($N_2$H$_4$) Propulsion System

  • 김정수;최환석;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.6-6
    • /
    • 2000
  • On-orbit thermal behavior of KOMPSAT (Korea Multi-purpose Satellite) propulsion system employing hydrazine (N$_2$H$_4$) liquid monopropellant is addressed. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was verified by flight telemetry data obtained during LEOP (Launch and Early Operation Phase). Results are depicted in terms of temperature history during several orbits selected and are compared with acceptable temperature ranges of system components. Cyclic behavior of temperature is reduced into duty cycles of the avionics heaters and subsequently converted into the electrical power required to keep away from propellant freezing. Temperature of each component which was achieved under on-ground thermal-balanced condition of spacecraft, is presented for comparison with the flight data, additionally.

  • PDF

Functional analysis of air transport mission (항공 수송 임무의 기능 분석에 관한 연구)

  • Song, Youn-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Functional analysis of air transport mission is conducted to establish the performance requirements of the commercial transport designs. The analysis process begins by making a top-down analysis to the aircraft system level mission functions. Correctly interpreting the top-level performance requirements is the first step in designing and building an aircraft system. Each function and sub-function is allocated and examined to the aircraft level and flight operations phase to optimize the system performance and design requirements, such that these lower-level requirements can be traced back to the top-level requirements they are designed to fulfill. Special attention is given to making sure all interfaces, both internal and external, are addressed. The results are also in good resources of functional hazard assessment involved in certification processes.

  • PDF

Ground Test & Evaluation of an Unmanned Aerial Vehicle

  • Kim, Jinhyoung;Jinyoung Suk;Kim, Ilsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47.6-47
    • /
    • 2002
  • UAV(Unmanned Aerial Vehicle) has become one of the most popular military/commercial aerial robots in the new millenium. In spite of all the advantages that UAVs inherently have, it is not an easy job to develop a UAV because it requires very systematic and complete approaches in full development envelop. The ground test & evaluation phase has the utmost importance in the sense that a well developed system can be best verified on the ground. In addition, many of the aircraft crashes in the flight tests were resulted from the incomplete development procedure. In this research, a verification procedure of the whole airborne integrated system was conducted including the flight management sys...

  • PDF

Structure Analysis of $BaTiO_3$ Film on the MgO(001) Surface by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy

  • Yeon Hwang;Lee, Tae-Kun;Ryutaro Souda
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.17-17
    • /
    • 2002
  • Time-of-flight impact collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of the epitaxially grown BaTiO₃ layers on the MgO(100) surface. Hetero-epitaxial BaTiO₃ layers can be deposited by the following steps: first thermal evaporation of titanium onto the MgO(100) surface in the atmosphere of oxygen at 400℃, secondly thermal evaporation of barium in the same manner, and finally annealing at 800℃. Well ordered perovskite BaTiO₃ was confirmed from the ICISS spectra and reflection high electron energy diffraction (RHEED) patterns. It was also revealed that BaTiO₃ had cubic structure with the same lattice parameter of bulk phase.

  • PDF

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

Probabilistic Load Analysis for Tailplane Considering Uncertainties in Design Variables (설계변수의 불확실성을 고려한 미익 하중의 확률론적 해석)

  • Choi, Yong-Joon;Kim, In-Gul;Lee, Seok-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1043-1050
    • /
    • 2010
  • This paper examined the probabilistic load analysis for the tailplane during pitching maneuvering in the conceptual aircraft design phase. The flight load analysis based on the probabilistic distribution of design variables are compared with the results of the deterministic analysis. Two forms of variable distribution are used in this paper. One is standard normal distribution, the other distribution is calculated from the results of short-period longitudinal equation of aircraft motion. The influence of the distribution parameter on the probabilistic load analysis was investigated and the significant design variables that have an impact on the mean and variance of probabilistic load were identified. The comparison indicates that probabilistic load analysis provides more reliable probabilistic load distribution for the structural design than the traditional deterministic analysis.

Pitch Angle Rigging, Tracking and Balancing of Smart UAV Rotor System (스마트무인기 로터 피치각 리깅, 트랙킹 및 밸런싱)

  • Lee, Myeong Kyu;Kim, Yusin;Choi, Seong Wook
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • KARI SUAV (Smart Unmanned Aerial Vehicle) program is currently on the phase of ground and flight test. SUAV is a tilt rotor aircraft having the capability of vertical take-off/landing and high speed forward flight. The SUAV rotor system is 3-bladed, gimbaled hub type, which is not common for conventional helicopter configuration. In this paper, detailed procedure and method of rotor pitch rigging, tracking and balancing were described based on the experience of SUAV ground test.

  • PDF

Pitch Command Generation Method for Consistent Initial Trajectory of Thrust-Vector-Controlled Vehicle (추력벡터제어 비행체의 일관된 탄도 성형을 위한 피치각명령 산출 방법)

  • Lee, Yong-In;Choe, Dong-Gyun;Hwang, Tae-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.739-744
    • /
    • 2013
  • In this paper, we propose a method of generating pitch commands for consistent initial trajectories irrelevant to flight conditions in the initial boosting phase of a thrust-vector-controlled vehicle. After shape assumption of the pitch command profile, parameters of the profile are determined in real time in order for the summit height of the trajectory to be a desired value by deriving the summit height considering thrust performance, gravity, and other flight conditions. Computer simulation results demonstrate good performance of the proposed method.

The Effects of Velocity of Propulsion on the Degree of Hardship Performance during a Figure Skating (피겨스케이팅 활주속도가 운동수행기술 발휘에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to examine the effects of the result of hardship performance of the propulsion speed on the flying carmel spins during a Figure Skating. The subjects were five the korea national representative players. Kinematic variables were analyzed 5frame of the excursion phase by the three-dimensional motion analysis system(60Hz). The obtained conclusion were as follows: In this study, during the propulsion classify two groups as "type I" the acceleration patterns S3, S4 and "type II" the uniform velocity group S1, S2, S5. The results of percentage comparative analysis between type I and type II can be summarized as below: the height of jump(24%), the height of COM(25%), the maximum speed of Roundhouse Kick(21%), the judging technical score(18%), the flight time(13%), the velocity of spins(4%), the distance of flight(-6%) Analysis of the results on performance variables, the velocity pattern of the type I showed comparatively excellence than that of type II.