• 제목/요약/키워드: Flight Log

검색결과 16건 처리시간 0.021초

Physical Parameter Measurement and Theoretical Target Strength Estimation of Juvenile Cod (Gadus macrocephalus)

  • Husni, Iqbal Ali;Hwang, Bo-Kyu;Shin, Hyeon-Ok;Kim, Min-Son
    • Ocean and Polar Research
    • /
    • 제37권4호
    • /
    • pp.333-340
    • /
    • 2015
  • The contrast (fish body to medium ratio) of density and sound speed were measured to estimate acoustic scattering from small juvenile cod (Gadus macrocephalus) with the Kirchhoff-Ray Mode backscatter model. The density contrast was measured by the density-bottle method and the sound speed contrast was estimated by the time of flight method. The results revealed that the measured density contrasts of juvenile cod varied between 1.003 and 1.029 (mean = 1.014, S.D. = 0.01). On the other hand, sound speed contrasts varied between 1.039 and 1.041 (mean = 1.041, S.D. = 0.001). The relationship between averaged target strength (TS) and total length (TL) established by the model were <$TS_{38kHz}$> = 20log(TL) - 68.8 and <$TS_{38kHz}$> = 20log(TL) - 69.4, respectively.

Proposed Data-Driven Approach for Occupational Risk Management of Aircrew Fatigue

  • Seah, Benjamin Zhi Qiang;Gan, Wee Hoe;Wong, Sheau Hwa;Lim, Mei Ann;Goh, Poh Hui;Singh, Jarnail;Koh, David Soo Quee
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.462-470
    • /
    • 2021
  • Background: Fatigue is pervasive, under-reported, and potentially deadly where flight operations are concerned. The aviation industry appears to lack a standardized, practical, and easily replicable protocol for fatigue risk assessment which can be consistently applied across operators. Aim: Our paper sought to present a framework, supported by real-world data with subjective and objective parameters, to monitor aircrew fatigue and performance, and to determine the safe crew configuration for commercial airline operations. Methods: Our protocol identified risk factors for fatigue-induced performance degradation as triggers for fatigue risk and performance assessment. Using both subjective and objective measurements of sleep, fatigue, and performance in the form of instruments such as the Karolinska Sleepiness Scale, Samn-Perelli Crew Status Check, Psychomotor Vigilance Task, sleep logs, and a wearable actigraph for sleep log correlation and sleep duration and quality charting, a workflow flagging fatigue-prone flight operations for risk mitigation was developed and trialed. Results: In an operational study aimed at occupational assessment of fatigue and performance in airline pilots on a three-men crew versus a four-men crew for a long-haul flight, we affirmed the technical feasibility of our proposed framework and approach, the validity of the battery of assessment instruments, and the meaningful interpretation of fatigue and work performance indicators to enable the formulation of safe work recommendations. Conclusion: A standardized occupational assessment protocol like ours is useful to achieve consistency and objectivity in the occupational assessment of fatigue and work performance.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

MALDI-TOF Mass Spectrometry as a Useful Tool for Identification of Enterococcus spp. from Wild Birds and Differentiation of Closely Related Species

  • Stepien-Pysniak, Dagmara;Hauschild, Tomasz;Rozanski, Pawel;Marek, Agnieszka
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1128-1137
    • /
    • 2017
  • The aim of this study was to explore the accuracy and feasibility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying bacteria from environmental sources, as compared with rpoA gene sequencing, and to evaluate the occurrence of bacteria of the genus Enterococcus in wild birds. In addition, a phyloproteomic analysis of certain Enterococcus species with spectral relationships was performed. The enterococci were isolated from 25 species of wild birds in central Europe (Poland). Proteomic (MALDI-TOF MS) and genomic (rpoA gene sequencing) methods were used to identify all the isolates. Using MALDI-TOF MS, all 54 (100%) isolates were identified as Enterococcus spp. Among these, 51 (94.4%) isolates were identified to the species level (log(score) ${\geq}2.0$), and three isolates (5.6%) were identified at a level of probable genus identification (log(score) 1.88-1.927). Phylogenetic analysis based on rpoA sequences confirmed that all enterococci had been correctly identified. Enterococcus faecalis was the most prevalent enterococcal species (50%) and Enterococcus faecium (33.3%) the second most frequent species, followed by Enterococcus hirae (9.3%), Enterococcus durans (3.7%), and Enterococcus casseliflavus (3.7%). The phyloproteomic analysis of the spectral profiles of the isolates showed that MALDI-TOF MS is able to differentiate among similar species of the genus Enterococcus.

2차원 평면에서 이동장애물에 대한 항공기의 유도/회피기동 연구 (Aircraft Collision-Avoidance/Guidance Strategy in Dynamic Environments for Planar Flight)

  • 이인석
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.69-75
    • /
    • 2004
  • 비행중인 다른 항공기를 회피하며 항공기를 목표점까지 유도하는 문제를 2차원 평면에서 고려하였다. 항공기는 속도의 크기가 일정한 질점이며, 제어입력으로 측가속도를 사용하는 것으로 가정하였다. 이동장애물에는 척력 포텐셜함수를 목적점에는 인력 포텐셜함수를 인공적으로 부여하여 항공기에 척력과 인력이 작용하도록 하였다. 유도/회피명령은 이들 포텐셜력과 상대속도를 사용하여 실시간으로 구현 가능한 유도/회피법칙을 구현하였다. Log 형태의 포텐셜함수를 사용하면 구현된 유도법칙은 잘 알려진 비례항법유도법칙이 되며, 회피법칙은 장애물까지 도달시간에 반비례하고 시선각 변화의 반대 방향으로 항공기를 회전시킨다. 제안된 유도/회피법칙은 시뮬레이션을 통하여 타당성을 검증하였다.

양서류 번식음 맵핑을 위한 무인비행장치 시스템의 정확성 검증 (Accuracy verification for unmanned aerial vehicle system for mapping of amphibians mating call)

  • 박민규;배서현
    • 한국환경복원기술학회지
    • /
    • 제25권2호
    • /
    • pp.85-92
    • /
    • 2022
  • The amphibian breeding habitat is confirmed by mating call. In some cases, the researcher directly identifies the amphibian individual, but in order to designate the habitat, it is necessary to map the mating call region of the amphibian population. Until now, it has been a popular methodology for researchers to hear mating calls and outline their breeding habitats. To improve this subjective methodology, we developed a technique for mapping mating call regions using Unmanned Aerial Vehicle (UAV). The technology uses a UAV, fitted with a sound recorder to record ground mating calls as it flies over an amphibian habitat. The core technology is to synchronize the recorded sound pressure with the flight log of the UAV and predict the sound pressure in a two-dimensional plane with probability density. For a demonstration study of this technology, artificial mating call was generated by a potable speaker on the ground and recorded by a UAV. Then, the recorded sound data was processed with an algorithm developed by us to map mating calls. As a result of the study, the correlation coefficient between the artificial mating call on the ground and the mating call map measured by the UAV was R=0.77. This correlation coefficient proves that our UAV recording system is sufficiently capable of detecting amphibian mating call regions.