• 제목/요약/키워드: Flight Dynamics

검색결과 302건 처리시간 0.026초

확장날개를 이용한 틸트로터 무인기 체공성능 향상 (Increasing Endurance Performance of Tiltrotor UAV Using Extended Wing)

  • 이명규;이치훈
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.111-117
    • /
    • 2016
  • A new configuration of tiltrotor UAV previously suggested by Korea Aerospace Research Institute (KARI) for the purpose of increasing the endurance performance in airplane mode flight has extended wings attached to the nacelle and rotated with the nacelle according to the flight modes. In this research, the effectiveness of the extended wing on the enhancement of the endurance performance of KARI tiltrotor UAV (TR60) was analytically investigated based on CFD analysis results. Flight tests and ground tests of measuring the fuel consumption were also conducted to directly compare the endurance performance for the two configurations of TR60 baseline and TR60 extended-wing model.

M20J 시뮬레이터 개발을 위한 시스템 통합 (System Integration for M20J Simulator Develoment)

  • 홍승범;김용환;정식항;백중환;황수찬;황명신;김칠영
    • 한국항공운항학회지
    • /
    • 제7권1호
    • /
    • pp.19-29
    • /
    • 1999
  • This paper proposes a system intergration method for M20J flight simulator development. The simulator consists of three modules. The first module is for flight dynamics simulation, and the second module is for avionic systems and flight instrument and the last module is for interface card which connects PC and input devices using rotary encoders and switches. Two computers are equipped in the simulator for instructor and trainee. An instructor can give a mission to a trainee, and control the flight simulation options through RS-232C serial port. Also, the instructor can monitor the training results of the trainee.

  • PDF

한국형 공중 시뮬레이터 항공기 연구 (Study on Korean In-Flight Simulator Aircraft)

  • 고준수;안종민;박성수
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1026-1030
    • /
    • 2011
  • This paper presented here contains development of variable stability system(VSS) control laws for the KIFS (Korean In-Flight Simulator) aircraft to simulate the dynamics of F-16 aircraft. Development of VSS Control law for pitch rate, roll rate, yaw rate simulation for three specified flight conditions using Model Following Technique with rate feedback autopilot for stability provision. The direct lift force controller was also added to the developed VSS control law to simulate the pitch rate and normal g-load simultaneously. The simulation results show high accuracy of F-16 aircraft's pitch, roll, yaw rate and g-load simulation.

비선형 비행 시스템을 위한 $H_{\infty}$ 접근법 기반 적응 신경망 동적 표면 제어 (Adaptive Neural Dynamic Surface Control via $H_{\infty}$ Approach for Nonlinear Flight System)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1728-1729
    • /
    • 2007
  • This paper presents an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for a full dynamics of a nonlinear flight system. It is assumed in this paper that model uncertainties such as structured and unstrutured uncertainties and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate model uncertainties of the nonlinear flight system, and an adaptive DSC technique is extended for disturbance attenuation of the nonlinear flight system. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance from external disturbances can be obtained. Finally, we perform the simulation for the nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

  • PDF

신경회로망을 이용한 이산 비선형 재형상 비행제어시스템 (Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

비행단계 식별 알고리즘을 이용한 초고속 표적의 탄착점 예측 (Impact Point Prediction of the Ballistic Target Using a Flight Phase Discrimination)

  • 정재경;황동환
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.234-243
    • /
    • 2015
  • It is required to have the capability to predict the impact point of the ballistic target in order to assign the firing unit with high engagement possibility for the interception in the ballistic target defense systems. In this paper, a novel method is proposed to predict the impact point of the ballistic target using a flight phase discrimination algorithm given the insufficient measurements on the partial trajectory. The flight of a ballistic target is composed of a boost phase and a ballistic phase with different dynamics. The flight phase is discriminated by using the normalized innovation distance between measurements and a priori estimated measurements. The threshold and tolerance in the flight phase discrimination are determined from the probabilistic characteristics of the estimation error. Monte Carlo simulations are performed to verify the proposed method.

CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 - (Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis -)

  • 배영환;구영모
    • Journal of Biosystems Engineering
    • /
    • 제36권6호
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정 (Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method)

  • 방극희;김낙완;홍창호;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.