• 제목/요약/키워드: Flight Dynamics

검색결과 301건 처리시간 0.027초

Practical Algorithms on Lunar Reference Frame Transformations for Korea Pathfinder Lunar Orbiter Flight Operation

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Bae, Jonghee;Park, Jae-ik;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권3호
    • /
    • pp.185-192
    • /
    • 2021
  • This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.

내삽형 부스터 안전 분리를 위한 비행 조건 연구 (Missile Flight Condition for Slip-in Booster's Safe Separation)

  • 오현식;이호일;최진;김익수
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.33-41
    • /
    • 2011
  • 내삽형 부스터의 분리 운동 수학모델을 소개하였다. 부스터 분리 운동을 시뮬레이션 하기 위하여 3자유도 2물체 운동모델을 정립하였다. 유도탄과 공기중에 노출되는 부스터 영역의 공력모델을 개발하였다. 그리고, 부스터를 밀어내는 가스발생기도 모델링하였다. 이 모델을 시뮬레이션하기 위하여 유도탄이 부스터 분리과정에서 계속 1g 수평비행 조건을 유지한다는 가정을 세우고, 이를 기반으로 유도탄과 부스터간의 작용력을 분리 단계별로 정의 할 수 있었다. 단계 0: 초기, 단계 1: 선형이동, 단계 2: 자유운동. 이 시뮬레이션을 통하여 부스터를 안전하게 분리할 수 있는 유도탄의 마하수 및 고도의 범위를 제안할 수 있었다.

생체모방공학을 이용한 고속철도 차간 공간에 적용한 부엉이 깃 형상 크기에 따른 공력소음 저감 연구 (The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy)

  • 한재현;김태민;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.606-611
    • /
    • 2012
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. To determine the effect of scaling of the owl's flight feather on the noise reduction, two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dB, while two-fold increase in length dimensions reduces the noise by 12 dB. Validation of numerical solution using wind tunnel experimental measurements are presented as well.

  • PDF

Virtual Flutter Plight Test of a Full Configuration Aircraft with Pylon/External Stores

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Paek, Seung-Kil
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.34-44
    • /
    • 2003
  • An advanced aeroelastic analysis using a computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) is presented in this Paper. A general aeroelastic analysis system is originally developed and applied to realistic design problems in the transonic flow region, where strong shock wave interactions exist. The present computational approach is based on the modal-based coupled nonlinear analysis with the matched-point concept and adopts the high-speed parallel processing technique on the low-cost network based PC-clustered machines. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Euler equations using the unstructured grid system have been applied to easily consider complex configurations. It is typically shown that the advanced numerical approach can give very realistic and practical results for design engineers and safe flight tests. One can find that the present study conducts a virtual flutter flight test which are usually very dangerous in reality.

신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어 (Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping)

  • 이태영;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

요소 기반의 헬리콥터 시뮬레이션 프로그램 개발 (Development of a Component Based Helicopter Simulation Program)

  • 신재화;최기영
    • 한국항공우주학회지
    • /
    • 제35권6호
    • /
    • pp.548-555
    • /
    • 2007
  • 기존의 헬리콥터 모델링은 주로 많은 가정들을 통한 수식 전개에 의존해 왔기 때문에 모델링이 어렵고, 특정 구간에서만 활용 가능하며, 모델링 구성이 바뀌면 많은 수정이 거쳐야 한다는 단점들이 제기되어 왔다. 본 연구에서는 다물체 동역학 기법을 적용한 헬리콥터 시뮬레이션 프로그램을 개발하여 AH-1 헬리콥터에 대한 모델링을 수행하였고, 또한 시뮬레이션 결과를 비행 시험 데이터 및 상용 헬리콥터 시뮬레이션 분석 도구인 FLIGHTLAB과 비교하여 그 가능성을 확인해 보았다.

리어제트 항공기 날개의 천음속 공탄성해석 (TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL)

  • 트란탄도안;김동현;김요한
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

태양, 달, 위성의 위치를 이용한 달의 방사조도 계산 (The Moon's Spectral Irradiance Computation using Relative Positions between the Sun, Moon, and the Satellite)

  • 서석배;송영주
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.152-162
    • /
    • 2013
  • 달의 방사조도는 위성 가시채널 검출기의 성능을 감시하기 위해서 사용된다. 본 논문에서는 천리안위성 FDS (Flight Dynamics Subsystem)에서 생성한 태양, 달, 위성의 위치 정보를 이용하여 달의 방사조도를 계산하는 방법 및 결과를 설명한다. 계산 결과는 천리안위성 기상탑재체 가시채널 검출기의 성능저하를 검출하고 보상하기 위한 알고리즘에 적용되었다.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

극초음속 비행체의 공기광학 조준오차 예측을 위한 전산해석 연구 (A COMPUTATIONAL STUDY OF ESTIMATING AERO-OPTIC BORESIGHT ERROR FOR A HYPERSONIC FLIGHT VEHICLE)

  • 임설;채훈;김종주
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.99-104
    • /
    • 2015
  • Aero-optic phenomena cause the image position displacement on an imaging plane of the airborne optical/IR systems. Particularly, the aero-optic boresight error(BSE) is important factor for homing, positioning and aiming applications of hypersonic flight interceptor missile. In this paper, an estimating method of aero-optic BSE for a hypersonic flight vehicle is studied. A ray tracing method and a transform method of refractive index fields from flow density fields are combined with computational fluid dynamics(CFD) method.