• Title/Summary/Keyword: Flight Data Generation and Transmission System

Search Result 2, Processing Time 0.015 seconds

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF

Development of Modeling and Simulation Tool for the Performance Analysis of Pods Mounted on Highly Maneuverable Aircraft (고기동 항공기 탑재 파드 성능 분석을 위한 모델링 및 시뮬레이션 도구 개발)

  • Lee, Sanghyun;Shin, Jinyoung;Lee, Jaein;Kim, Jongbum;Kim, Songhyon;Kim, Sitae;Cho, Donghyurn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.507-514
    • /
    • 2022
  • The EO/IR targeting pod mounted on a fighter to acquire information about tactical targets is typically mounted and operated at the bottom of the aircraft fuselage. Since the aircraft equipped with such an external attachment has complexed aerodynamic and inertial characteristics compared to the aircraft flying without an external attachment, a method of system performance analyses is required to identify development risk factors in the early stages of development and reflect them in the design. In this study, a development plan was presented to provide the necessary modeling and simulation tools to develop a pod that can acquire measurement data stably in a highly maneuverable environment. The limiting operating conditions of the pods mounted on the highly maneuverable aircraft were derived, the aerodynamics and inertial loads of the mounted pods were analyzed according to the limiting operating conditions, and a flight data generation and transmission system were developed by simulating the mission of the aircraft equipped with the mounted pods.