• Title/Summary/Keyword: Flight Altitude

Search Result 395, Processing Time 0.019 seconds

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

A Study on the Techniques of Path Planning and Measure of Effectiveness for the SEAD Mission of an UAV (무인기의 SEAD 임무 수행을 위한 임무 경로 생성 및 효과도 산출 기법 연구)

  • Woo, Ji Won;Park, Sang Yun;Nam, Gyeong Rae;Go, Jeong Hwan;Kim, Jae Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.304-311
    • /
    • 2022
  • Although the SEAD(suppression to enemy air defenses) mission is a strategically important task in modern warfare, the high risk of direct exposure to enemy air defense assets forces to use of unmanned aerial vehicles. this paper proposes a path planning algorithm for SEAD mission for an unmanned aerial vehicle and a method for calculating the mission effectiveness on the planned path. Based on the RRT-based path planning algorithm, a low-altitude ingress/egress flight path that can consider the enemy's short-range air defense threat was generated. The Dubins path-based Intercept path planning technique was used to generate a path that is the shortest path while avoiding the enemy's short-range anti-aircraft threat as much as possible. The ingress/intercept/egress paths were connected in order. In addition, mission effectiveness consisting of fuel consumption, the survival probability, the time required to perform the mission, and the target destruction probability was calculated based on the generated path. The proposed techniques were verified through a scenario.

Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments (기상조절 실험용 드론의 설계·제작과 활용에 관한 연구)

  • Hae-Jung Koo;Miloslav Belorid;Hyun Jun Hwang;Min-Hoo Kim;Bu-Yo Kim;Joo Wan Cha;Yong Hee Lee;Jeongeun Baek;Jae-Won Jung;Seong-Kyu Seo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.35-53
    • /
    • 2024
  • Under the leadership of the National Institute of Meteorological Sciences (NIMS), the first domestic autonomous flight-type weather modification experimental drone for fog and lower-level cloud seeding was developed in 2021. This drone is designed based on a multi-copter configuration with a maximum takeoff weight of approximately 25 kg, enabling the installation of up to four burning flares for seeding materials and facilitating weather observations (temperature, pressure, humidity, and wind) as well as aerosol (PM10, PM2.5, and PM1.0) particle measurements. This research aims to introduce the construction of the drone and its recent applications over the past two years, providing insights into the experimental procedures, effectiveness verification, and improvement directions of the weather modification drone-based rain enhancement. In particular, partial confirmation of the experimental effects was obtained through the fog dissipation experiment on December 10, 2021, and the lower-level cloud seeding case study on October 5, 2022. To enhance the scope and rainfall amount of weather modification experiments using drones, various technological approaches, including adjustments to experimental altitude, seeding lines, seeding amount, and verification methods are necessary. Through this research, we aim to propose the development direction for weather modification drone technology, which will serve as foundational technology for practical application of domestic rain enhancement technology.

Analysis and Implication on the International Regulations related to Unmanned Aircraft -with emphasis on ICAO, U.S.A., Germany, Australia- (세계 무인항공기 운용 관련 규제 분석과 시사점 - ICAO, 미국, 독일, 호주를 중심으로 -)

  • Kim, Dong-Uk;Kim, Ji-Hoon;Kim, Sung-Mi;Kwon, Ky-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.225-285
    • /
    • 2017
  • In regard to the regulations related to the RPA(Remotely Piloted Aircraft), which is sometimes called in other countries as UA(Unmanned Aircraft), ICAO stipulates the regulations in the 'RPAS manual (2015)' in detail based on the 'Chicago Convention' in 1944, and enacts provisions for the Rules of UAS or RPAS. Other contries stipulates them such as the Federal Airline Rules (14 CFR), Public Law (112-95) in the United States, the Air Transport Act, Air Transport Order, Air Transport Authorization Order (through revision in "Regulations to operating Rules on unmanned aerial System") based on EASA Regulation (EC) No.216/2008 in the case of unmanned aircaft under 150kg in Germany, and Civil Aviation Act (CAA 1998), Civil Aviation Act 101 (CASR Part 101) in Australia. Commonly, these laws exclude the model aircraft for leisure purpose and require pilots on the ground, not onboard aricraft, capable of controlling RPA. The laws also require that all managements necessary to operate RPA and pilots safely and efficiently under the structure of the unmanned aircraft system within the scope of the regulations. Each country classifies the RPA as an aircraft less than 25kg. Australia and Germany further break down the RPA at a lower weight. ICAO stipulates all general aviation operations, including commercial operation, in accordance with Annex 6 of the Chicago Convention, and it also applies to RPAs operations. However, passenger transportation using RPAs is excluded. If the operational scope of the RPAs includes the airspace of another country, the special permission of the relevant country shall be required 7 days before the flight date with detail flight plan submitted. In accordance with Federal Aviation Regulation 107 in the United States, a small non-leisure RPA may be operated within line-of-sight of a responsible navigator or observer during the day in the speed range up to 161 km/hr (87 knots) and to the height up to 122 m (400 ft) from surface or water. RPA must yield flight path to other aircraft, and is prohibited to load dangerous materials or to operate more than two RPAs at the same time. In Germany, the regulations on UAS except for leisure and sports provide duty to avoidance of airborne collisions and other provisions related to ground safety and individual privacy. Although commercial UAS of 5 kg or less can be freely operated without approval by relaxing the existing regulatory requirements, all the UAS regardless of the weight must be operated below an altitude of 100 meters with continuous monitoring and pilot control. Australia was the first country to regulate unmanned aircraft in 2001, and its regulations have impacts on the unmanned aircraft laws of ICAO, FAA, and EASA. In order to improve the utiliity of unmanned aircraft which is considered to be low risk, the regulation conditions were relaxed through the revision in 2016 by adding the concept "Excluded RPA". In the case of excluded RPA, it can be operated without special permission even for commercial purpose. Furthermore, disscussions on a new standard manual is being conducted for further flexibility of the current regulations.

  • PDF

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.