• Title/Summary/Keyword: Flexural-Axial Load Experiment

Search Result 12, Processing Time 0.016 seconds

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Experimental study on concrete-encased composite columns with separate steel sections

  • Xiao, Congzhen;Deng, Fei;Chen, Tao;Zhao, Zuozhou
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • This paper presents an experimental study on the behavior of concrete-encased composite columns with multiseparate steel sections subjected to axial and eccentric loads. Six 1/4-scaled concrete-encased composite columns were tested under static loads. The specimens were identical in geometric dimensions and configurations, and the parameter of this experiment was the eccentricity ratio of the applied load. Each two of the specimens were loaded with 0, 10%, and 15% eccentricity ratios. The capacity, deformation pattern, and failure mode of the specimens were carefully examined. Test results indicate that full composite action between the concrete and the steel sections can be realized even though the steel sections do not connect with one another. The concrete-encased composite columns can develop stable behavior and sufficient deformation capacity by providing enough transverse reinforcing bars. Capacities of the specimens were evaluated based on both the Plain Section Assumption (PSA) method and the superimposition method. Results show that U.S. and Chinese codes can be accurate and safe in terms of bending capacities. Test results also indicate that the ACI 318 and Mirza methods give the best predictions on the flexural stiffness of this kind of composite columns.