• Title/Summary/Keyword: Flexural modulus

Search Result 520, Processing Time 0.057 seconds

Experimental Study on the Hygrothermal Ageing Effect to the Strength of CFRP Materials for Marine Leisure Boat (열수노화 조건에서 레저선박용 탄소섬유강화플라스틱의 강도변화에 관한 실험적 연구)

  • Jeong, Han Koo;Noh, Jackyou
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.205-214
    • /
    • 2018
  • This paper deals with the experimental study on the hygrothermal ageing effect to the strength of Carbon Fiber Reinforced Plastics (CFRP) materials for marine leisure boat manufactured by vacuum assisted resin infusion method. The experiments performed consist of tensile, flexural and shear tests according to American Society for Testing and Materials (ASTM) and Korean Industrial Standards (KS) test methods. Test coupons are varied from uni-directional(UD, $0^{\circ}$, $90^{\circ}$), Bi-Directional (BD), and Double-Bias (DB) carbon fiber fabrics in conjunction with epoxy resin. The results of tensile test show that tensile strength reduces significantly while not the same degree of reduction is observed for elasticity modulus with respect to the existence of hygrothermal ageing effect. This implies that the tensile strain induced from external load holds steady values but ultimate strength values change widely under hygrothermal ageing effect. In case of the flexural test, $0^{\circ}$ UD shows more strength reduction than $90^{\circ}$ UD while BD has reduced values in both flexural strength and elasticity modulus under hygrothermal ageing effect. It is learned that the bending strain induced from external load and ultimate strength values are reduced with respect to hygrothermal ageing effect. Shear test performed only on DB materials, and the results show marginal reduction in ultimate strength and moderate reduction in elasticity modulus. This means that the shear strain varies more than ultimate shear strength with respect to hygrothermal ageing effect. The experiment conducted in this paper clearly demonstrates the differences in material properties of the CFRP for the consideration of hygrothermal ageing effect. Findings obtained from this experimental study can serve as a fundamental input data for the realistic structural responses of marine leisure boat built in CFRP materials.

Evaluation of Mechanical Properties of Three-dimensional Printed Flexible Denture Resin according to Post-polymerization Conditions: A Pilot Study

  • Lee, Sang-Yub;Lim, Jung-Hwa;Shim, June-Sung;Kim, Jong-Eun
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate whether three-dimensional (3D)-printed flexible denture resin has suitable mechanical properties for use as a thermoplastic denture base resin material. Materials and Methods: A total of 96 specimens were prepared using the 3D printed flexible denture resin (Flexible Denture). Specimens were designed in CAD software (Tinkercad) and printed through a digital light-processing 3D printer (Asiga MAX UV). Post-polymerization process was conducted according to air exposure or glycerin immersion at 35℃ or 60℃ and for 30 or 60 minutes. The maximum flexural strength, elastic modulus, 0.2% offset yield strength, and Vickers hardness of 3D-printed flexible denture resin were assessed. Result: The maximum flexural strength ranged from 64.46±2.03 to 84.25±4.32 MPa, the 0.2% offset yield strength ranged from 35.28±1.05 to 46.13±2.33 MPa, the elastic modulus ranged from 1,764.70±64.66 to 2,179.16±140.01 MPa, and the Vickers hardness ranged from 7.01±0.40 to 11.45±0.69 kg/mm2. Conclusion: Within the limits of the present study, the maximum flexural strength, 0.2% offset yield strength, elastic modulus, and Vickers hardness are sufficient for clinical use under the post-polymerization conditions of 60℃ at 60 minutes with or without glycerin precipitation.

Mechanical properties of steel-polypropylene fiber reinforced fully recycled coarse aggregate concrete

  • Weiwei Su;Zongping Chen;Haoyu Liao;Dingyuan Liu;Xingyu Zhou
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, the steel fiber and the polypropylene fiber were used to enhance the mechanical properties of fully recycled coarse aggregate concrete. Natural crushed stone was replaced with recycled coarse aggregate at 100% by volume. The steel fiber and polypropylene fiber were used as additive material by incorporating into the mixture. In this test two parameters were considered: (a) steel fiber volume ratio (i.e., 0%, 1%, 1.5%, 2%), (b) polypropylene fiber volume ratio (i.e., 0%, 0.1%, 0.15%, 0.2%). The results showed that compared with no fiber, the integrity of cubes or cylinders mixed with fibers after failure was better. When the volume ratio of steel fiber was 1~2%, the width of mid-span crack after flexural failure was 5~8 mm. In addition, when the volume ratio of polypropylene fiber was 0.15%, with the increase of steel fiber content, the static elastic modulus and toughness of axial compression first increased and then decreased, and the flexural strength increased, with a range of 6.5%~20.3%. Besides, when the volume ratio of steel fiber was 1.5%, with the increase of polypropylene fiber content, the static elastic modulus decreased, with a range of 7.0%~10.5%. The ratio of axial compression toughness first increased and then decreased, with a range of 2.2%~8.7%. The flexural strength decreased, with a range of 2.7%~12.6%. On the other hand, the calculation formula of static elastic modulus and cube compressive strength of fully recycled coarse aggregate with steel-polypropylene fiber was fitted, and the optimal fiber content within the scope of the test were put forward.

The Considerations on Flexural Performance of RC Beam Strengthened with Basalt Fibers (Basalt 섬유로 보강된 철근콘크리트 보의 휨 성능 고찰)

  • 심종성;문도영;박성재;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.599-604
    • /
    • 2002
  • Fibers have been used to improve tile flexural performance of reinforced concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fiber produced from this basalt raw material has high initial strength and durability. But, the main advantages of the basalt fiber are resistance to high operating temperatures and lower modulus and chemical resistance compared to fiberglass. Also basalt fiber may be consumed as a potential replacement for expensive carbon fibers.

  • PDF

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Flexural Performance of RC Beams Strengthened with Diffrent Amount of CFRP Composite (탄소섬유복합체로 보강된 RC부재의 보강재 강성에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.129-132
    • /
    • 2006
  • It is generally reported that most of RC beams strengthened with simply bonded FRP composite is failed by FRP debonding. Also, the flexural performance of RC member strengthened with FRP composite can be calculated using the effective strain of FRP. The effective strain as a result of the debonding failure depends on many variables, such as FRP stiffness including the thickness($t_f$) and modulus of elasticity($E_f$), the amount of FRP but the FRP stiffness is reportedly the most influential. The purpose of this paper, therefore, is to examine effects of FRP stiffness on the flexural strengthening of RC beams. 4 different stiffness of CFRP composite including CFRP sheet and laminae were selected. From the tests, it was found that the flexural performance of RC beams strengthened with CFRP composite can be calculated based on the effective strain of the CFRP composite and the effective strain is inversely proportional to the CFRP stiffness.

  • PDF

An Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사를 이용한 고강도 콘크리트의 물성실험 연구)

  • 박종협;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.159-163
    • /
    • 1995
  • The purpose of this experimental research is to not only devlop the high-strength concrete using sea and river sand, but also investigatc mechanical properites of the high-strength concrete, such as the elastic modulus, the compressive strength of concrete cyllinder, and etc. Also, rational analytical formula for elastic modulus has been proposed together with those for the splitting tensile strength and the flexural strength to be predicted from compressive strength of conccrete cyllinder.

  • PDF

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

Mechanics of kinking and buckling of plastic board drains

  • Madhav, Madhira R.;Park, Yeong Mog;Miura, Norihiko
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.429-443
    • /
    • 1995
  • The deformational response of plastic board drains installed to accelerate consolidation of soft soils, is examined as a problem of downdrag. The drain is modelled as a beam-column in which the axial load increases nonlinearly with depth. The soil response is represented by the Winkler medium whose coefficient of subgrade modulus increases linearly with depth. The governing equations for the drain-soil system are derived and solved as an eigenvalue problem. The critical buckling loads and the shape of the drain are obtained as functions of the normalized subgrade modulus of the soil at the top, the parameters signifying the variation of axial load along the length of the drain and the increase of subgrade modulus with depth. The derived deformed shapes of the drain are consistent with the observed ones.

Comparative Study in Fracture Strength of Zirconia Veneering Ceramics (지르코니아 전장 세라믹의 파절강도에 관한 비교 연구)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.335-340
    • /
    • 2010
  • This study was performed to evaluate the fracture strength of the dental zirconia veneering ceramics for zirconia ceramic core. Six commercial zirconia veneering ceramics were used in this study, namely E-Max(Ivoclar vivadent, Inc, Liechtenstein), Creation ZI(KLEMA Dental produckte GmbH, Austria), Cercon ceram kiss(Degudent, GmbH, Hanau-Wolfgang, Germany), Triceram(Dentaurum, Ispringen, Germany), Zirkonzahn(Zirkonzahn GmbH, Italy), Zirmax(Alpadent, korea). All samples were prepared according to the relevant instructions of manufacture. Disc specimens were prepared to the final dimensions of 17 mm in diameter and 1.5 mm in thickness. The biaxial flexure strength test was conducted using a ball-on-three-ball method. All specimens were tested in a moisture-free environment. Average flexural strengths were analyzed with Weibull analysis and one-way analysis of variance(ANOVA). Significant differences were founded between the mean flexural strength values of five commercials zirconia veneering ceramics and the other. The flexural strengths and Weibull modulus were similar to those of five groups E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR), Zirkonzahn(ZI) with the exception of Zirmax(ZM). The biaxial flexural strength from Cercon ceram kiss(CE) was higher than those of other groups. Fracture analysis showed similar results for these five groups.