• Title/Summary/Keyword: Flexural modulus

Search Result 520, Processing Time 0.025 seconds

Effect of Porous Substrate on the Strength of Asymmetric Structure

  • Kim, Chul;Park, Sang Hyun;Kim, Taewoo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, we investigate the effect of porous $Al_2O_3$ substrate on the strengths of asymmetric structures after we prepare such a structure consisting of a dense $Li_2ZrO_3$ top layer and porous $Al_2O_3$ substrate layer. The porosity and elastic modulus of the substrate layer are controlled by sintering temperature, which has three values of 1150, 1250 and $1350^{\circ}C$. The porosity is controlled in the range of ~ 30-50 vol%, elastic modulus is ~80-120 GPa and elastic mismatch $E_s/E_c$ is ~ 0.6-1.0. Indentation stress-strain curves are obtained and analyzed to evaluate the yield stress of the asymmetric structure by concentrated local loading of WC balls. Conventional flexural strengths are also obtained to evaluate the strength of the asymmetric structure. The results indicate that the local yield strength of the asymmetric structure has mid-values between the top and the substrate layer; however, the flexural strength of the asymmetric structure are mainly influenced by elastic modulus and strength of the substrate.

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

Mechanical properties of coconut fiber-reinforced coral concrete

  • Cunpeng Liu;Fatimah De'nan;Qian Mo;Yi Xiao;Yanwen Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.107-116
    • /
    • 2024
  • This study examined the changes in the mechanical properties of coral concrete under different coconut fiber admixtures. To accomplish this goal, the compressive strength, splitting tensile strength, flexural strength and elastic modulus properties of coral concrete blocks reinforced with coconut fibers were measured. The results showed that the addition of coconut fiber had little effect on the cube and axial compressive strengths. With increasing coconut fiber content, the flexural strength and splitting tensile strength of the concrete changed substantially, first by increasing and then by decreasing, with maximum increases of 36.0% and 12.8%, respectively; additionally, the addition of coconut fibers resulted in a failure type with some ductility. When the coconut fiber-reinforced coral concrete was 7 days old, it reached approximately 74% of its maximum strength. The addition of coconut fiber did not affect the early strength of the coral concrete mixed with seawater. When the amount of coconut fiber was no more than 3 kg/m3, the resulting concrete elastic modulus decreased only slightly from that of a similar concrete without coconut fiber, and the maximum decrease was 5.4%. The optimal dose of coconut fiber was 3 kg/m3 in this study.

Influence of mechanical properties with gingival shade composites resin according to the thermocycling treatment (열 순환 처리가 Gingival shade 복합레진의 기계적 특성에 미치는 영향)

  • Im, Yong-Woon;Hwang, Seong-Sig
    • Journal of Technologic Dentistry
    • /
    • v.39 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Purpose: The objective of this study was to evaluate influence of mechanical properties of gingival shade composite resins(GSCRs) according to thermocycling treatment. Methods: The material utilized in this study was Crea.lign(CGR), Twiny flow(TGF) and Twiny(TGP). Total sixty specimens were fabricated with a dimension of $25{\times}2{\times}2mm$ according to the ISO 4049. After fabrications, specimens of before and after thermocycling(to $55^{\circ}C$ from $5^{\circ}C$) were stored in the distilled water for 24 hours at the $37^{\circ}C$. Three-point flexural test was performed in universal testing machine(Instron 5966, USA) at a crosshead speed of 1 mm/min. Flexural strength, flexural modulus and work of fracture according to the thermocycling were analyzed using a one-way ANOVA analysis. Surface analysis of GSCRs after thermocycling evaluated using the scanning electron microscope. Results: : The highest FS was measured in TGP group of NTC group and lowest in CGR group after TC. After TC, FS and FM decreased in CGR and TGP groups, but TGF increased. There was a statistically significant difference between FS and WOF in GSCRs(p<0.05). But FM did not show any significant difference after TC (p>0.05). The strength of the characteristic exceeded the flexural strength required by ISO 4049(> 80 MPa). Weibull modulus(m) showed the highest reliability in the TGP group (m = 14.22), and the reliability of the TGF and TGP groups after TC decreased. Conclusion: Thermocycling treatment is important factor influence of mechanical properties with gingival shade composite resins. Therefore, we recommended that mechanical properties need to get useful information and accuracy for life-span expectancy according to the thermocycling treatment.

Flexural strengths of implant-supported zirconia based bridges in posterior regions

  • Rismanchian, Mansour;Shafiei, Soufia;Nourbakhshian, Farzaneh;Davoudi, Amin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.346-350
    • /
    • 2014
  • PURPOSE. Impact forces in implant supported FDP (fixed dental prosthesis) are higher than that of tooth supported FDPs and the compositions used in frameworks also has a paramount role for biomechanical reasons. The aim of this study was to evaluate the flexural strength of two different zirconia frameworks. MATERIALS AND METHODS. Two implant abutments with 3.8 mm and 4.5 mm platform were used as premolar and molar. They were mounted vertically in an acrylic resin block. A model with steel retainers and removable abutments was fabricated by milling machine; and 10 FDP frameworks were fabricated for each Biodenta and Cercon systems. All samples were thermo-cycled for 2000 times in $5-55^{\circ}C$ temperature and embedded in $37^{\circ}C$ artificial saliva for one week. The flexural test was done by a rod with 2 mm ending diameter which was applied to the multi-electromechanical machine. The force was inserted until observing fracture. The collected data were analyzed with SPSS software ver.15, using Weibull modulus and independent t-test with the level of significance at ${\alpha}=.05$. RESULTS. The mean load bearing capacity values were higher in Biodenta but with no significant differences (P>.05). The Biodenta frameworks showed higher load bearing capacity ($F_0=1700$) than Cercon frameworks ($F_0=1520$) but the reliability (m) was higher in Cercon (m=7.5). CONCLUSION. There was no significant difference between flexural strengths of both zirconia based framework systems; and both Biodenta and Cercon systems are capable to withstand biting force (even parafunctions) in posterior implant-supported bridges with no significant differences.

Influence of heating rate on the flexural strength of monolithic zirconia

  • Ozturk, Caner;Celik, Ersan
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.202-208
    • /
    • 2019
  • PURPOSE. Fabrication of zirconia restorations with ideal mechanical properties in a short period is a great challenge for clinicians. The purpose of the study was to investigate the effect of heating rate on the mechanical and microstructural properties of monolithic zirconia. MATERIALS AND METHODS. Forty monolithic zirconia specimens were prepared from presintered monolithic zirconia blanks. All specimens were then assigned to 4 groups according to heating rate as Control, Group $15^{\circ}C$, Group $20^{\circ}C$, and Group $40^{\circ}C$. All groups were sintered according to heating rates with the sintering temperature of $1500^{\circ}C$, a holding time of 90 minutes and natural cooling. The phase composition was examined by XRD analysis, three-point bending test was conducted to examine the flexural strength, and Weibull analysis was conducted to determine weibull modulus and characteristic strength. Average grain sizes were determined by SEM analysis. One-way ANOVA test was performed at a significance level of 0.05. RESULTS. Only tetragonal phase characteristic peaks were determined on the surface of analyzed specimens. Differences among the average grain sizes of the groups were not statistically significant. The results of the three-point bending test revealed no significant differences among the flexural strength of the groups (P>.05). Weibull modulus of groups was ranging from 3.50 to 4.74. The highest and the lowest characteristic strength values were obtained in Group $20^{\circ}C$ and Control Group, respectively. CONCLUSION. Heating rate has no significant effect on the flexural strength of monolithic zirconia. Monolithic zirconia restorations can be produced in shorter sintering periods without affecting the flexural strength by modifying the heating rate.

Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester Based Resin Composite -Effect of Length/Content of E-Glass Fiber and Number of Stacking- (랜덤상태의 E-유리 단섬유 강화 불포화 폴리에스터 기반 수지 복합재료의 물성 - E-유리 단섬유의 길이와 함량 및 적층수의 영향 -)

  • Park, Jin-Myung;Park, Young-Gwang;Lee, Young-Hee;Seo, Dae-Kyung;Lee, Jang-Hun;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2015
  • To develop automobile parts, the unsaturated polyester based matrix resin(PR)/reinforcement(randomly oriented chopped E-glass fiber, GF) composites were prepared using sheet molding compound(SMC) compression molding. The effects of GF length(0.5, 1.0 1.5 and 2.0inch)/content (15, 20, 25, 30wt%) and number of ply(3, 4 and 5) on the specific gravity and mechanical properties of PR/GF composites were investigated in this study. The optimum length of GF was found to be about 1.0inch for achieving improved mechanical properties(tensile strength and initial modulus). The tensile strength and initial modulus of composites increased with increasing GF content up to 30wt%, which is favorable content range for SMC. The specific gravity, tensile strength/initial modulus, compressive strength/modulus, flexural strength/modulus and shear strength increased with increasing the number of ply up to 5, which is the maximum number of ply range for SMC. The effectiveness of ply number increased in the flexural strength > shear strength > compressive strength > tensile strength.

Effects of specimens dimension on the flexural properties and testing reliability of dental composite resin (치과용 복합레진의 굽힘 특성과 시험 신뢰도에 미치는 시편 크기의 영향)

  • Im, Yong-Woon;Hwang, Seong-sig;Kim, Sa-hak;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.273-280
    • /
    • 2017
  • The aim of the present study was to investigate the effects of specimen dimension on the flexural properties and testing reliability of dental composite resin. The composite resin was prepared experimentally by mixing a resin matrix with silanated micrometer glass filler at 50 vol%. Flexural specimens with various dimension in specimen's width were fabricated by light curing using a split metal mold; $25{\times}2{\times}2mm$, $25{\times}2{\times}4mm$, $25{\times}2{\times}6mm$ in length ${\times}$ height ${\times}$ width. The flexural strength and modulus were determined according to ISO 4049 test protocol at a span length of 20 mm (normal-flexural strength; NFS). Another flexural test was conducted using mini-sized specimens ($12{\times}2{\times}2mm$, $12{\times}2{\times}4mm$, $12{\times}2{\times}6mm$) from the broken specimens at a span length of 10 mm (mini-flexural strength; MFS). Data were analyzed with ANOVA and Duncan's post-hoc test and the test reliability was evaluated by Weibull analysis. Results showed that there are generally no significant difference in flexural strength with the increase in the specimen width in NFS and MFS tests. However, the test reliability of flexural strength based on Weibull analysis was largely changed with the variables in the dimension of width and span length. The flexural modulus of NFS was increased as the dimension of specimens width increased while there was no trend in flexural modulus of MFS test. Overall results recommend that the evaluation of flexural properties and the reliability of dental composite resins should be performed with more than one test method.

Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics (탄소섬유강화 질화규소 세라믹스의 마찰마모 특성)

  • Park Yi-Hyun;Yoon Han-Ki;Kim Bu-Ahn;Park Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

A Study of Relations of Chain Lengths and Properties for Bifunctional linear DGEBF/Linear Amino (EDA, HMDA) Cure Systems (선형 이관능성 DGEBF/선형아민(EDA, HMDA) 경화계의 경화제 사슬길이와 물성과의 관계에 대한 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.37-43
    • /
    • 2004
  • To determine the effect of chain length and chemical structure of linear amine curing agents on thermal and mechanical properties, a standard bifunctional linear DGEBF epoxy resin was cured with EDA and HMDA having amine group at the both ends of main chain in a stoichiometrically equivalent ratio in condition of preliminary and post cure. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by numbers of carbon atoms of main chain. In contrast, the results show that the DCEBF/EDA system having two carbons had higher values in the thermal stability, density, shrinkage (%), grass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBF/HMDA system having six carbons, whereas the DGEBF/EDA cure system had relatively low values in maximum ekothermic temperature, maximum conversion of epoxide, thermal expansion coefficient than the DGEBF/HDMA cure system. These findings indicate that the packing capability (rigid property) in the EDA structure affects the thermal and mechanical properties predominantly. It shows that flexural fracture properties have a close relation to flexural modulus and strength.