• Title/Summary/Keyword: Flexural behaviour

Search Result 201, Processing Time 0.029 seconds

Crack behavior of Surface Strengthened Zirconia-Alumina Composite During Indentation

  • Balakrishnan, A.;Chu, M.C.;Panigrahi, B.B.;Choi, Je-Woo;Kim, Taik-Nam;Park, J.K.;Cho, S.J.
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.743-746
    • /
    • 2006
  • ZTA tubes were prepared by centrifugal casting and sintered at $1600^{\circ}C$ for 2 hrs. The ZTA tubes were machined into specimens of $3{\times}4{\times}40$ mm. Molten Soda lime glass (SLG) was penetrated into the surface of ZTA at an optimized condition of $1500^{\circ}C$ for the holding time of 5 h and furnace cooled. The extra glass on the surface was removed using a resin bonded diamond wheel. The glass penetrated samples were tested for their flexural strength using four point bend test. Vickers Indentation cracks were made on the glass penetrated surface at different loads of 9.8 N, 49 N, 98 N and 196 N. The residual compression on the surface enhanced the flexural strength and crack arrest behaviour remarkably. This was attributed to the thermoelastic mismatch between the glass and ZTA matrix during cooling.

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

Influence of corrosive phenomena on bearing capacity of RC and PC beams

  • Malerba, Pier Giorgio;Sgambi, Luca;Ielmini, Diego;Gotti, Giordano
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.117-143
    • /
    • 2017
  • The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.