• Title/Summary/Keyword: Flexural Rigidity

Search Result 217, Processing Time 0.023 seconds

CFD MODELING VEGETATED CHANNEL FLOWS: A STATE-OF-THE-ART REVIEW

  • Choi Sung-Uk;Yang Won-Jun
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.101-112
    • /
    • 2005
  • This paper presents the state of the art of the CFD applications to vegetated open-channel flows. First, important aspects of the physics of vegetated flows found through the laboratory experiments are briefly reviewed. Then, previous CFD applications to one-dimensional vertical structure, partly-vegetated flows, compound open-channel flows with floodplain vegetation, and fully three-dimensional numerical simulations are reviewed. Finally, topics for further researches such as relationship between the resistance and flexural rigidity, additional drag due to foliages, and melting the experience of CFD with the depth-averaged modeling, are suggested.

  • PDF

Design of RC Flat Plate Subjected to Combined Axial Compressive and Floor Load (면내 압축력 및 바닥하중을 받는 플랫 플레이트의 설계)

  • 김재요;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.507-512
    • /
    • 2000
  • This paper presents a design procedure using the moment magnifier method that is applicable to RC flat plates subjected to combined axial compressive and uniform or non-uniform floor load. Based on the numerical results, the design values of the buckling coefficient and the effective flexural rigidity, that define the buckling force, have been proposed. Using these design values, this paper provides the design procedure for the moment magnifier method.

  • PDF

Composite Material made of Recycling Paper and Plastics (폐지를 활용한 재생 플라스틱)

  • 윤승원;이장용;김윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.697-702
    • /
    • 2002
  • Composite material made of recycling paper and plastics was developed. The tension and bending testing result of developed composite material shows that the cellulose contained in paper contributes much to get high flexural rigidity. As an application example, the raised access floor for office automation purpose was developed by making use of developed composite material. Manufacturing process together with the extrusion die and the compression die for to manufacture the access floor have been developed.

  • PDF

An Analysis of the Orthotropic Curved Circular Ring Sector Plates (곡선경계를 갖는 철근 콘크리트 이방성 선형판의 해석)

  • 노홍민;조진구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.258-264
    • /
    • 1999
  • In this study, a computer program was developed for analysis of the orthotropic curved ring sector plates. In the developing program , the thin-plate theory and multi-base coordinate system was adopted. The effect of design factors-boundary conditions, loading conditions, steel ratio, open angle, radius of curvature and relative flexural rigidity between slab and edge-beam-on the behavior of the circular ring sector plates were discussed. Also, the practical limitations was proposed to replace the problem of the orthotropic sector plate by equivalent rectangular plage.

  • PDF

Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances (일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동)

  • Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

An Analytical Investigation on the Flexural Behavior of FRP Reinforced Concrete Slab by Orthotropic Plate Theory (직교이방성 판이론에 의한 FRP 보강 콘크리트 슬래브의 휨해석)

  • 손경욱;정재호;정상균;윤순종;이승식
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.9-14
    • /
    • 2004
  • In this study, analytical investigations on the flexural behavior of FRP reinforced concrete slab were discussed. In the derivation of analytic solution, the FRP reinforced concrete slab was modeled as a structural orthotropic plate. To determine the flexural rigidities of an orthotropic plate model, the elastic equivalence method was employed. In the finite element analysis, the approximate method to determine the rigidity matrix of orthotropic plate element was also suggested using the elastic equivalence method. The results obtained by the analytical solution and the finite element analysis were compared with that of experiment.

Elastic flexural and torsional buckling behavior of pre-twisted bar under axial load

  • Chen, Chang Hong;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.273-283
    • /
    • 2014
  • According to deformation features of pre-twisted bar, its elastic bending and torsion buckling equation is developed in the paper. The equation indicates that the bending buckling deformations in two main bending directions are coupled with each other, bending and twist buckling deformations are coupled with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending buckling deformations are independent to the twist buckling deformation. The research indicates that the elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed, the prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle leads to "resistance" effect of the stronger axis on buckling deformation, and enhances the elastic bending buckling critical capacity. It is noted that the "resistance" is getting stronger and the elastic buckling capacity is higher as the cross section bending rigidity ratio increases.

Physical Properties Effect of Dry-Heat and Microwave-Cured Acrylic Resins depending on the Irradiation-Induced Changes (유도광선변화에 따른 건식중합과 마이크로파중합 아크릴레진의 물리적 성질영향)

  • Kim, Gyu-Ri
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4388-4397
    • /
    • 2015
  • The purpose of this study was to research the property change of acrylic resins depending on the induced-beam change and research the improved physical property of dry-heat and microwave-cured dental place acrylic resin in order to develop the acrylic resins with the optimum characteristic. As a result of observing flexural rigidity, hardness and color difference, the dry-heat-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5, 15, and 25 kGy irradiation. The microwave-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5 kGy irradiation. The correlation analysis showed a positive correlation among ARD, flexural rigidity (0 418), E coefficient (0.675) and Barcol hardness (0 588). The radiation cure technology is helpful for relieving the contamination caused by the manufacture of polymer composite. It can significantly contribute to the fusion of ultra violet cure technology and nano technology and the improvement of mechanical property without giving effect to the workability of polymer.

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.