• Title/Summary/Keyword: Flexural Performance

Search Result 1,244, Processing Time 0.036 seconds

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

An Experimental Study for the Structural Behavior of the Precast Prestressed Concrete Columns (프리캐스트 콘크리트 교각의 구조거동에 관한 실험적 연구)

  • Choi, Seung-Won;Shin, Hyun-Mok;Lee, Jae-Hoon;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.146-149
    • /
    • 2006
  • In many previous studies, a prestressed concrete column has a larger flexural strength, shear strength and restoring force than a RC column. Recently, a precast prestressed concrete column is rising up a very rational column structure in that a economic aspect. In a precast prestressed concrete column, it makes in a factory. So, it needs a small construction site and acquires a higher durability than a cast in place concrete column. Seven precast concrete columns were tested under a constant axial load and a cyclically reversed horizontal load to investigate the performance. It is designed with a hollow section and consisted of 4 segments. The main variables of the test were a amount of prestressed, a type of joints and a boding type of strands. The test results show that the performance of a precast prestressed concrete column; failure mode, maximum load, energy dissipation and stiffness degradation.

  • PDF

A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites (섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • Koh, Kyung-Taeg;Park, Jung-Jun;Ryu, Gum-Sung;Kang, Su-Tae;Ahn, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF

Comparative Study on Test Method of Compressive and Flexural Characteristics of Structural Adhesives for FRP Composites used in Strengthening RC Members (구조보강용 FRP 함침.접착수지의 압축.휨 특성치 시험방법 비교 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.349-352
    • /
    • 2006
  • Pull-off test is generally used as a method of evaluating bond strength of FRP with concrete at the job site. However, pull-off test damages FRP composites and the maximum pull-off strength is limited up to tensile strength of concrete. Accordingly, it is required to set-up a test method that can simply evaluate bond performance of structural adhesive. This study suggested compression and bending test of epoxy resin as test methods that can indirectly evaluate performance of adhesive, as well as standardized test specification for different types of specifications from various countries. In this study, the section dimension of compression and bending test specimens is unified, and standard test specimen size is achieved by test results.

  • PDF

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System (에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능)

  • Han, Bok-Kyu;Hong, Geon-Ho;Shin, Yeong-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

An Experimental Study on the Physical Properties of Porous Cement Concrete Using Polymer as an Admixture (폴리머를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 관한 실험적 연구)

  • 채창우;민병렬;심종우
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.131-139
    • /
    • 2000
  • Porous Concrete usually contains large amount of voids(about 10∼20%) after compaction so that it has relatively high permeability. It has been introduced in domestic since early 1980's but it has problems such as lack of optimized mixture, low strength and durability, and other defects, etc. The purpose of this study is to manufacture high-performance porous concrete using polymer to enhance the mechanical properties. The results of this study are as follows; the compressive strength range 12 92∼207kgf/㎠, the tensile strength range is 14∼28kgf/㎠, the bending stength range is 42∼73kgf/㎠, and the coefficient permeability range is 5.77×10-2∼6.79×10-1cm/sec. To develope high-performance porous concrete. further studies are needed on optimum mixture of fineness modulus and admixture.

Optimum Life Cycle Cost Design of Steel Box Girder Bridges (강상형교의 최적 Life Cycle Cost 설계)

  • 조효남;민대홍;김구선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.151-158
    • /
    • 1998
  • This paper presents an optimal decision model for minimizing the life-cycle cost of steel box girder bridges. The point is that it takes into account service life process as a whole, and the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs and expected failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. The optimal solution identifies those values of the decision variables that result in minimum expected total cost. The performance constraints in the form of flexural failure and shear failure are those specified in the design code. Based on extensive numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on life-cycle cost approach proposed in this study provides a lot more rational and economical design, and thus the proposed approach will propose the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Strengthening performance of RC beams strengthened by bonded or unbonded prestressed CFRP laminates (부착 또는 비부착된 탄소판으로 긴장 보강한 RC보의 보강성능)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun;Jung, Woo-Tai;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • This study investigates the flexural behavior and strengthening performance of RC beams strengthened by prestressed CFRP laminates through static bending tests. Tests on RC beams strengthened with prestressed CFRP laminates were carried out for both cases where the CFRP laminates were bonded or not and the corresponding effects on the strengthening performances of RC beams were examined. Experimental results revealed that RC beams strengthened with prestressed CFRP laminates presented increased crack load and yield load according to the level of prestress. Premature debonding occurred before the RC beam strengthened with bonded prestressed CFRP laminates reaches the maximum load, and the specimen presented similar behavior to the one exhibited by the specimen with unbonded laminates.

  • PDF