• Title/Summary/Keyword: Flexible semiconductor

Search Result 217, Processing Time 0.026 seconds

Printed flexible OTFT backplane for electrophoretic displays

  • Ryu, Gi-Seong;Lee, Myung-Won;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.213-217
    • /
    • 2011
  • Printing technologies were applied to fabricate a flexible organic thin-film transistor (OTFT) backplane for electrophoretic displays (EPDs). Various printing processes were adopted to maximize the figures of each layer of OTFT: screen printing combined with reverse offset printing for the gate electrodes and scan bus lines with Ag ink, inkjet for the source/drain electrodes with glycerol-doped Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) (PEDOT:PSS), inkjet for the semiconductor layer with Triisopropylsilylethynyl (TIPS)-pentacene, and screen printing for the pixel electrodes with Ag paste. A mobility of $0.44cm^2/V$ s was obtained, with an average standard deviation of 20%, from the 36 OTFTs taken from different backplane locations, which indicates high uniformity. An EPD laminated on an OTFT backplane with $190{\times}152$ pixels on an 8-in panel was successfully operated by displaying some patterns.

All-Optical Bit-Rate Flexible NRZ-to-RZ Conversion Using an SOA-Loop Mirror and a CW Holding Beam

  • Lee, Hyuek Jae
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2016
  • All-optical non-return-to-zero (NRZ) -to- return-to-zero (RZ) data-format conversion has been successfully demonstrated using a semiconductor optical amplifier in a fiber-loop mirror (so-called SOA-loop mirror) with a continuous-wave (CW) holding beam. The converted RZ signal after pulse compression has been used to create a 40 Gb/s OTDM (Optical Time Division Multiplexing) signal. Here is proposed an NRZ-to-RZ conversion method without any additional optical clocks, unlike conventional methods based on optical AND logic. In addition, it has the merit of operating at various bit-rate speeds without any controlling device. Moreover, it has a simple structure, and it can be used for all-optical bit-rate-flexible clock recovery.

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • Ga, Jae-Won;Jang, Gwang-Seok;Lee, Mi-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

Stretchable and Foldable Electronics by Use of Printable Single-Crystal Silicon

  • Ahn, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.29-29
    • /
    • 2008
  • Realization of electronics with performance equal to established technologies that use rigid semiconductor wafers, but in lightweight, foldable and stretchable formats would enable many new application possibilities. Examples include wearable systems for personal health monitoring, 'smart' surgical gloves with integrated electronics and electronic eye type imagers that incorporate focal plane arrays on hemispherical substrates. Circuits that use organic or certain classes of inorganic electronic materials on plastic or steel foil substrates can provide some degree of mechanical flexibility, but they cannot be folded or stretched. Also, with few exceptions such systems offer only modest electrical performance. In this talk, I will present a new approach to high performance, flexible and stretchable integrated circuits. These systems combine single-crystal silicon nanoribbons with thin plastic or elastomeric substrates using both "top-down" and "transfer-printing" technologies. The strategies represent promising routes to high performance, flexible and stretchable optoelectronic devices that can incorporate established, high performance inorganic electronic materials.

  • PDF

Non volatile memory TFT using mobile proton in gate dielectric by hydrogen neutral beam treatment

  • Yun, JangWon;Jang, Jin Nyoung;Hong, MunPyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.231-232
    • /
    • 2016
  • We have fabricated the nc-Si, IGZO based nonvolatile memory TFTs using mobile protons, which can be generated by simple hydrogen insertion process via H-NB treatment at room temperature. The TFT devices above exhibited reproducible hysteresis behavior, stable ON/OFF switching, and non-volatile memory characteristics. Also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and our modified H-NB CVD. The room temperature proton-insertion process can reveal flexible inorganic based all-in-one display panel including driving circuit and memory circuit.

  • PDF

Congestion Management with Arrival Estimation of Unit Loads in an Automated Material Handling System (운송시간의 예측을 통한 물류정체 통제 모형)

  • Chung, Jae-Woo;Hur, Yeon-Ho
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.131-141
    • /
    • 2012
  • The automated material handling systems today are playing ever more important roles in semiconductor/LCD fabrication facilities. Recently they became more flexible, intelligent, and speedy than in the past. The facilities have been fully automated because the size and weight of the unit loads used in the facilities were being increased beyond the limits that a human operator can handle. This research develops an efficient procedure to streamline the delivery of unit loads by the automated material handling system (AMHS). For this task, the research employs the event scheduling theory that has been successfully used in the both academia and industry. The developed procedure was applied to an actual LCD fabrication facility and improved the performance of an existing material handling system.

The Determination of Screen Printing Main Factors for Array of Vacuum Glazing Pillar by using Factorial Design of Experiments (요인 실험계획법을 이용한 진공유리 지지대 배치용 스크린 인쇄 주요공정변수 설정)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • The screen printing is a process that is widely used in manufacturing process of various fields such as flexible devices, portable multimedia devices, OLED, and the solar cell. The screen printing method has been studied as a method for forming the high precision micro-pattern, making the low-cost manufacturing process and reducing cost through improvement of productivity. It is applicable to deposit and forming the pillars which are one of the core element for comprising vacuum glazing. In this paper, by using the paste of the glass frit base, the screen printing was performed. We analyzed the effect for the printing process to deposit pillar paste on the screen printing parameters by the factorial experimental design. The polynomial predicting the volume of the printed supporting pillars was drawn by using screen printing.

Electrochemical Synthesis of Compound Semiconductor Photovoltaic Materials

  • Yu, Bong-Yeong;Jeon, Byeong-Jun;Lee, Dong-Gyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.11.1-11.1
    • /
    • 2010
  • As one of the non-vacuum, low temperature fabrication route, electrochemical synthesis has been focused for pursuing the cost-effective pathway to produce high efficiency photovoltaic devices. Especially the availability to form the thin film structure on flexible substrate would be the great advantage of electrochemical process. The successful synthesis of the most favorable absorber materials such as CdTe and CIGS has been reported by many researchers, however, the efficiency of electrochemically synthesized could not exceed that from vacuum process, because of microstructural controllability and compositional variation on devices. In this study, we represent the effect of process parameters on the microstructure and composition of compound semiconductor during the synthesis, and propose the photovoltaic characteristics of electrochemically synthesized solar cells.

  • PDF

Matching Improvement of RF Matcher for Plasma Etcher (식각장비의 RF 정합모듈 성능 개선)

  • Sul, Yong-Tae;Lee, Eui-Yong;Kwon, Hyuk-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.327-332
    • /
    • 2008
  • New RF matcher module has been proposed in this paper for improvement of RF matcher in plasma etcher system using in semiconductor and display panel manufacturing process. New designed warm gear was used instead of bevel gear in new driving module, and control system was re-arranged with one-chip micro-process technique. The matching performance of new match module was improved in various process condition with reduction of backlash and matching time, and flexible motion of motor compared commercial match module. However this new type RF match module will improve the productivity in etching process of the mass production line.

Development of Repair FPC Bonder (리페어 FPC 본더 개발)

  • Ahn Jung-Woo;Seo Ji-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.27-31
    • /
    • 2005
  • This article contains the development of FPC bonder that used for repair or trial product. Nowadays, in FPO module process (including PDP) accept the thermo-compress bonding method when attach FPC(Flexible Printed Circuit Board), TCP(Tape Carrier Package) and COF(Chip on the FPC) by ACF(Anisotropic Conductive Film). This system consists of ACF attachment part, pre-bonding part, main bonding part, loading / unloading part. This composition is a stand-alone system, not an in-line system. Hereafter, this composition should be developing into in-line system in all area of FPD industry.

  • PDF