• 제목/요약/키워드: Flexible pavement

검색결과 82건 처리시간 0.026초

현장공진주시험을 이용한 보조기층 재료의 대체 $M_R$ 시험법 (Alternative Method of Determining Resilient Modulus of Subbase Materials Using Free-Free Resonant Column Test)

  • 권기철;김동수
    • 한국도로학회논문집
    • /
    • 제2권2호
    • /
    • pp.149-161
    • /
    • 2000
  • 회복탄성계수$(M_R)$로 표현되는 보조기층 재료의 탄성계수는 연성 포장체의 역학적 설계에 대단히 중요한 물성치이다. 그러나 반복재하식 $M_R$ 시험을 일상적 시험으로 적용하기에는 너무 시험과정이 복잡하고, 고가이며, 많은 시험시간을 필요로 한다. 본 연구에서는 보조기층 재료의 변형특성을 고려하여 현장공진주시험(EF-RC)을 이용한 대체 $M_R$ 시험법을 개발하였다. 보조기층 재료의 변형특성 평가를 위하여 변형률 크기 및 평균주응력의 탄성계수에 대한 영향을 조사하였다. 제안한 대체 $M_R$ 시험법으로 결정된 탄성계수와 반복재하식 $M_R$ 시험에서 결정된 회복탄성계수는 서로 잘 일치하여 제안된 기법의 효용성을 확인하였다.

  • PDF

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.