• Title/Summary/Keyword: Flexible objects

Search Result 154, Processing Time 0.026 seconds

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

Design and control of the electrostatic suspension system for flexible objects

  • Toshiro Higuchi;Jeon, Jong-Up;Kim, Sun-Min;Woo, Shao-Ju;Lee, Sun-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.383-386
    • /
    • 1997
  • Electrostatic suspension is a method to levitate an object by using electrostatic forces. Its main advantage is to levitate objects without any mechanical contact which fulfills the requirement of an object handling in ultra clean environment. In this paper, the electrostatic suspension system for film-like thin plate such as aluminum sheet, is designed and controlled. In contrast with the conventional electrostatic suspension system which requires the costly and bulky high-voltage amplifiers, it is suggested to use the switching voltage control method in consideration of real industrial application for the handling of such flexible bodies. Some experimental results show that the developed electrostatic suspension system shows good performances to levitate flexible film-like thin plate.

  • PDF

A Flexible Conveying System using Hybrid Control under Distributed Network

  • Yeamglin, Theera;Charoenseang, Siam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.583-586
    • /
    • 2002
  • In this research, we propose a flexible conveying system (FCS) which consists of multiple arrays of cells. Each cell is a wheel driven by a two degree-of-freedom mechanism. The direction and velocity of cell are controlled based on the concept of hybrid control under a distributed network. Each cell has its own controller under a subsumption architecture for low-level control. A cell communicates with its four neighboring cells to manipulate n targeted object towards its desired position. The high-level control assigns a desired position and direction of the object to each cell. The path of each object is generated by many supporting cells. Moreover, the FCS can handle multiple objects simultaneously. To study the flexible conveying system, a GUI-based simulator of flexible conveying system is constructed. The simulated results show that the system can handle multiple objects independently and simultaneously under the proposed hybrid control architecture.

  • PDF

Robot manipulator's contact tasks on uncertain flexible objects

  • Wu, Jianqing;Luo, Zhiwei;Yamakita Masaki;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.460-463
    • /
    • 1995
  • The present paper studies a robot manipulator's contact tasks on the uncertain flexible objects. The flexible object's distributed parameter model is approximated into a lumped "position state-varying" model. By using the well-known nonlinear feedback compensation, the robot's control space is decomposed into the position control subspace and the object's torque control subspace. The optimal state feedback is designed for the position loop, and the robot's contact force is controlled through controlling the resultant torque on the object using model-reference simple adaptive control. Experiments of a PUMA robot interacting with an aluminum plate show the effectiveness of this control approach. approach.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Stable Mass-Spring Model for Real-time Animation of Flexible Objects (비정형 물체의 실시간 애니메이션을 위한 안정적 질량-스프링 모델)

  • Gang, Yeong-Min;Jo, Hwan-Gyu;Park, Chan-Jong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • In this paper, we propose an efficient technique for the animation of flexible thin objects. Mass-spring model was employed to represent the flexible objects. Till now, many techniques have used the mass-spring model to generate plausible animation of soft objects. A straight-forward approach to the animation with mass-spring model is explicit Euler method, but the explicit Euler method has serious disadvantage that it suffers from 'instability problem'. The implicit integration method is a possible solution to overcome the instability problem. However, the most critical flaw of the implicit method is that it involves a large linear system. This paper presents a fast animation technique for mass-spring model with approximated implicit method. The proposed technique stably updates the state of n mass-points in O(n) time when the number of total springs are O(n). We also consider the interaction of the flexible object and air in order to generate plausible results.

  • PDF

Electrostatic Suspension System of Flexible Objects using Relay Feedback Control (릴레이 제어법을 이용한 유연 판상체의 정전부상에 관한 연구)

  • Jeon Jong-Up;Kim Sun-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.104-110
    • /
    • 2006
  • A design and control of electrostatic suspension system for flexible objects is presented. A number of electrode pairs of which the number depends on the object flexibility are positioned above the object and the voltages applied to each electrode pair are controlled, independently on the others, on the basis of the gap length. To implement the system with low cost and compactness, switched-voltage control scheme that is based on the relay feedback control is utilized. Relay feedback control method deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity and thus high voltage amplifiers that are costly and bulky are not needed any more. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping originating from the electrodes and levitated object. Employing fourteen electrode pairs, a thin aluminum plate with a thickness of 0.1 mm has been suspended at a gap length of 0.75mm.

UIL:A Novel Indexing Method for Spatial Objects and Moving Objects

  • Huang, Xuguang;Baek, Sung-Ha;Lee, Dong-Wook;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • Ubiquitous service based on Spatio-temporal dataspaces requires not only the moving objects data but also the spatial objects. However, existing methods can not handle the moving objects and spatial objects together. To overcome the limitation of existing methods, we propose a new index structure called UIL (Union Indexing Lists) which contains two parts: MOL (Moving Object List) and SOL (Spatial Object List) to index the moving objects and spatial objects together. In addition, it can suppose the flexible queries on these data. We present the results of a series of tests which indicate that the structure perform well.

  • PDF

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF