• Title/Summary/Keyword: Flexible multibody dynamic

Search Result 85, Processing Time 0.025 seconds

Dynamic Analysis of a Flexible Windshield Wiper Mechanism (탄성 앞창닦기 기구의 동력학적 해석)

  • 유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.450-455
    • /
    • 1986
  • 본 연구에서는 직교좌표계 및 Euler-Lagrange 방법을 이용하여 유도된 기본 방정식을 사용하여 앞창닦기기구(windshield wiper mechanism)의 동력학적 해석을 하 였다.모우터가 일정한 각속도로 회전하고 있는 경우와, 토오크가 각속도의 크기에 따라 변화하는 경우 각각에 대해서 강체로 해석할 때와 탄성체로 가정할 때의 해석결 과를 비교하였다.

An Influence of Water Ingestion into Engine Cylinder on the Joint Reaction Force of the Connecting Rod (엔진 실린더 내 물 유입이 커넥팅로드 조인트반력에 미치는 영향)

  • Kim, Hyeong-Hyeon;Yoon, Hi-Seak;Seo, Kwon-Hee;Moon, Young-Deuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.79-84
    • /
    • 1999
  • This paper focus on investigating the influence of the amount of water ingestion and the engine speed on the joint reaction force of the connecting rod in engine. The connecting rod was modelled by MSC/PATRAN, the modal informations of it were obtained by the DMAP module in the MSC/NASTRAN, and the dynamic force history was computed through the flexible multibody dynamic simulation in DADS. To analyze the joint reaction force acting on the connecting rod, the 48 cases were investigated. The engine speed varies with 200, 700, 1600, 2400rpm and the volumetric ratio of water to the combustion chamber varies with 0, 10, 20, ..., 90, 95 and 97.5% . As the engine speed decreases and the amount of water ingestion increases, the joint reaction force increase. Especially when the amount of water ingestion exceeds the 70% of the volume of the combution chamber, the joint reaction force acting on the connecting rod is over the design strength.

  • PDF

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Effect of Chassis Flexibility on Ride Quality (샤시의 강성이 운전석 승차감에 미치는 영향 분석)

  • 김광석;유완석;이기호;김기태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1996
  • Dynamic analysis of a three-axle heavy truck is carried out with rigid body model and flexible body model. To see the effects of chassis flexibility, the chassis is modeled as flexible body. The mass matrix, stiffness matrix, and vibration normal modes of the chassis are obtained by a finite element analysis program, and four vibration normal modes are used in the flexible body model. The vehicle model consisting of a frame, a cab, suspensions, an engine, a deck, a seat, and tires, has total 77 degrees of freedom. The result shows that the peaked acceleration in the flexible model is lower than that of the rigid body model.

  • PDF

A Study on the Multibody Dynamics Simulation-based Dynamic Safety Analysis of Machinery for Installation and Operation of USBL in Unmanned Vessel (무인선 USBL의 설치 및 운용을 위한 기계시스템의 다물체 동역학 시뮬레이션 기반 동적 안전성 검토에 관한 연구)

  • Jaewon Oh;Hyung-Woo Kim;Jong-Su Choi;Bong-Huan Jun;Seong-Soon Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.943-951
    • /
    • 2024
  • This paper considers the simulation-based installation and operation safety analysis of installation and operation machinery of USBL as underwater equipment in operation environments. The simulation model of this mechanical system was developed using flexible multibody dynamics simulation technology. Operation and environmental conditions were applied using dynamic forces model considering ocean environments. The developed simulation model was used to evaluate operation safety through eigenvalue analysis, dynamic forces analysis, and structural analysis. As the analysis results, the operation safety was very low in extreme operation condition due to increase of dynamic loads by VIV effect. It was not a problem because safety factor had more than 2.0 in this case. However, the operation safety should be further strengthened because the USBL and LARS was installed and utilized in unmanned vessel with automatic controls. In order to improve safety by avoiding VIV frequency, we redesigned the USBL pole.

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System) (고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석))

  • Seo Jong-Hwi;Jung Il-Ho;Park Tae-Won;Mok Jin-Yong;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.