• Title/Summary/Keyword: Flexible manufacturing system

Search Result 499, Processing Time 0.024 seconds

A Simulation Model for the performance of process using SIMAN Language in Flexible Manufacturing Systems (유연생산체제에서 SIMAN을 이용한 공정의 수행도 평가를 위한 시뮬레이션 모형)

  • 강영식;함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.153-161
    • /
    • 1997
  • This paper has proposed the modelling by simulation in order to evaluate the performance of process through discrete event simulation using SIMAN language in flexible manufacturing systems. The production system is assumed to be a job shop type of system under the batch production of discrete products. In this paper, the input data is the workstation(process) time, the number of workstation(process), a probability distribution, the number of simulation runs. Also, transient period is considered. In the case study, this paper deals with three products in real flexible manufacturing systems. Finally, a number of simulation runs were executed under different experimental conditions to obtain preliminary statistics on the following performance measures: operating rate of facility and average system operating rate, transient period, central processing unit, average system throughput, and average waiting time in queues.

  • PDF

Performance Analysis and Evaluation for Flexibility of Manufacturing Systems in QM era (품질경영시대의 유연성을 갖는 생산시스템의 성능분석 및 평가)

  • Lee, Seung-Hyun;Yoo, Wang-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.251-262
    • /
    • 1999
  • In the automated manufacturing systems, the problem regarding how to make production activities flexible is even more important and critical than that regarding how to product large quantities, and the more flexible, if possible, the manufacturing system is, the more competitiveness and profitable factors it gets. This research, therefore, concentrated on establishing the flexibility and evaluating performance on the manufacturing system, operational flexibility is considered because of enabling the manufacturing system to get both the improvement of production rate and the adaptive ability of environment changes. For it, we used the analytical tool, GSPNs, which is a kind of timed Petri-Nets. GSPNs is competent enough to consider practical situations just like operation priorities, machine failure, randomness, concurrency and so on. Through the GSPNs analysis, it is confirmed that in the manufacturing system with operational flexibility is compatible with the traditional performances such as production rate or mean waiting time.

  • PDF

Effect of Manufacturing Accuracy of Flexible Propeller on the Open Water Performance (유연 프로펠러의 제작 정도가 단독성능에 미치는 영향)

  • Lee, Kun-Hwa;Jang, Hyun-Gil;Lee, Chang-Sup;Nho, In-Sik;Lee, Sang-Gab;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.349-354
    • /
    • 2013
  • The blades of flexible propellers are formed by overlaying and adhering many layers of thin glass-fiber fabric sheets, are compressed and dried in the rigid mold. The current manufacturing process can not avoid the rather irregular deformation of the blades composed of non-isotropic non-uniform fabric structures, and inevitably introduces the different shape-forming errors between blades. In this paper, several flexible model propellers are precisely measured with three-dimensional optical instrument and compared with the original design geometry. The model propellers with the as-measured geometry are evaluated with the lifting-surface-theory-based propeller analysis code. The open-water performance are presented and discussed. The importance of the manufacturing accuracy is addressed to be able to apply the flexible propellers for propulsion of marine vehicles.

A Study of Buffer Management in Flexible Manufacturing Systems with an AGV System (AGV시스템을 적용한 유연생산시스템에서의 버퍼관리 기법에 관한 연구)

  • Kim, Kyung Sup;Lee, Chong Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.351-362
    • /
    • 1999
  • 버퍼는 생산시스템에서 시스템내의 기계고장, 프로세스시간의 변화, 그리고 부품들의 이동경로의 복잡성 등과 같은 요인들로 인해 발생 가능한 blocking현상과 starving현상을 감소시키는데 사용되고 있다. 유연 생산시스템(Flexible Manufacturing System)에서는 버퍼의 단위당 비용이 높아 시스템내의 총 버퍼 크기는 제한적이어서, 적절한 버퍼 관리를 통해 시스템 효율성을 향상시킬 수 있다. 본 연구는 이러한 버퍼의 특성을 분석하고 AGVS(Automated Guided Vehicle System)을 사용하는 다중셀방식의 FMS(multi-cell Flexible Manufacturing Systems) 환경에서의 버퍼관리와 관련된 기존 연구들을 검토하고, 새로운 개념의 가상시스템버퍼를 소개한다.

  • PDF

An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments (멀티 셀 유연생산환경을 위한 통합운용시스템)

  • Nam, Sung-Ho;Ryu, Kwang-Yeol;Shin, Jeong-Hoon;Kwon, Ki-Eok;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

A Study on Optimized Layout Design of FAS Line Through Production Flow Analysis (생산 흐름 분석을 통한 FAS라인의 최적 배치 설계에 관한 연구)

  • Ga, Chun-Sik;Jung, Jin-Hwi;Jang, Bong-Choon;Eom, Yong-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1070-1075
    • /
    • 2004
  • Many mid-sized companies in Korean automotive industry have attempted to solve the lack of human power, to control the quality of components, to improve the production rate, and to innovate the manufacturing line. The goals of this study are to analyze the production rate of an automotive component manufacturing line using simulation software, to construct a Flexible Automation Subassembly (FAS) system and to suggest an optimized layout design using FAS line. In this research, the simulation model for manufacturing line was developed and used the realistic data (production planning, component type, working order, process time, queue time, line rules, etc) of a medium sized company in Korean automotive industry. To complete this research, a simulation software 'ARENA' was used.

  • PDF

A Study on Optimized Layout Design of FAS Line Through Production Flow Analysis (생산 흐름 분석을 통한 FAS라인의 최적 배치 설계에 관한 연구)

  • Ga Chun Sik;Jang Bong-Choon;Eom Yong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.38-44
    • /
    • 2005
  • Many mid-sized companies in Korean automotive industry have attempted to solve the lack of human power, to control the quality of components, to improve the production rate, and to innovate the manufacturing line. The goals of this study are to analyze the production rate of an automotive component manufacturing line using simulation software, to construct a Flexible Automation Subassembly (FAS) system and to suggest an optimized layout design using FAS line. In this research, the simulation model for manufacturing line was developed and used the realistic data of a medium sized company in Korean automotive industry. To complete this research, a simulation software 'ARENA' was used. This research analyzed the work distribution strategy and cycle time element for production flow and proposed an optimized layout to resolve line balancing problem which would bring the improved production rate.

A study on the real time control of flexible manufacturing system using colored and timed Petri Nets (페트리네트를 이용한 유연생산시스템의 실시간 제어에 관한 연구)

  • 노상도;김기범;김종원;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1099-1104
    • /
    • 1993
  • The real time control system for FMS(Flexible Manufacturing System) is implemented at this paper. To achieve this goal, the Colored and Timed Petri-Net model is constructed and used to simulate the real time operation of FMS. Using the Colored and Timed Petri-Net model, evaluating any kind of FMS plant is possible. On-line shceduler, intelligent dispatcher, real time monitor and the simulation model of shop floor are contructed using LAN communication, relational database system in this paper. Finally, this real time control system is applied to the FMS/CIM center at Seoul National University.

  • PDF

An autonomous cooperative System under the concept of Holonic Manufacturing (Holonic Manufacturing 개념하의 자주.협동적인 시스템)

  • 박홍석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.512-515
    • /
    • 1996
  • A mass production system was implemented to reduce a manufacturing cost in a way of copying with a strong world market competition. However customer's demands are changing so rapidly and the mass production system is nolonger competitive to meet the demands. FMS (Flexible Manufacturing System) has been introduced as a replacement for the mass production system, but it still does not meet system's requirements. A new manufacturing system, called a holonic manufacturing system(HMS), is emerging. In this paper it is introduced an autonomous cooperative system under the concept of HMS.

  • PDF

An Efficient Search Algorithm for Flexible Manufacturing Systems (FMS) Scheduling Problem with Finite Capacity (유한용량 Flexible Manufacturing Systems(FMS) 스케줄링 문제에 대한 효율적인 탐색 알고리즘 연구)

  • Kim, Hwang-Ho;Choi, Jin-Young
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • In this paper, we propose an efficient search algorithm for finding an optimal schedule to minimize makespan, while avoiding deadlock situation in Flexible Manufacturing Systems (FMS) with finite capacity, in which each job needs to be processed in several job stages for completion. The proposed algorithm uses a modeling and control method based on Petri-net. Especially, we improve the efficiency of the search algorithm by using a priority rule and an efficient bounding function during the search procedure. The performance of the proposed algorithm is evaluated through a numerical experiment, showing that it holds considerable promise for providing an optimal solution efficiently comparing to past work.