• Title/Summary/Keyword: Flexible dynamics

Search Result 406, Processing Time 0.019 seconds

NMR Spectroscopic Assessment of the Structure and Dynamic Properties of an Amphibian Antimicrobial Peptide (Gaegurin 4) Bound to SDS Micelles

  • Park, Sang-Ho;Son, Woo-Sung;Kim, Yong-Jin;Kwon, Ae-Ran;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.261-269
    • /
    • 2007
  • The structure and dynamics of a 37-residue antimicrobial peptide gaegurin 4 (GGN4) isolated from the skin of the native Korean frog, Rana rugosa, was determined in SDS micelles by NMR spectroscopy. The solution structure of the peptide in SDS micelles was determined from 352 NOE-derived distance constraints and 22 backbone torsion angle constraints. Dynamic properties for the amide backbone were characterized by $^1H-^{15}N $heteronuclear NOE experiments. The structural study revealed two amphipathic helices spanning residues 2-10 and 16-32 and that the helices were connected by a flexible loop. An intraresidue disulfide bridge was formed between residues Cys31 and Cys37 near the C-terminus. The loop region (11-15) connecting the two helices are were slightly more flexible than these helices themselves. From the fact that since there is no contact NOEs between two helices, it is implied that the GGN4 peptide shows an independent motion of both helices which has an angle of about $ 60^{\circ}-120^{\circ}$ from each other.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

Internal pressure dynamics of a leaky and quasi-statically flexible building with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.61-91
    • /
    • 2013
  • An analytical model of internal pressure response of a leaky and quasi-statically flexible building with a dominant opening is provided by including the effect of the envelope external pressure fluctuations on the roof, in addition to the fluctuating external pressure at the dominant opening. Wind tunnel experiments involving a flexible roof and different building porosities were carried out to validate the analytical predictions. While the effect of envelope flexibility is shown to lower the Helmholtz frequency of the building volume-opening combination, the lowering of the resonant peak in the internal and net roof pressure coefficient spectra is attributed to the increased damping in the system due to inherent background leakage and envelope flexibility. The extent of the damping effects of "skin" flexibility and background leakage in moderating the internal and net pressure response under high wind conditions is quantified using the linearized admittance functions developed. Analytical examples provided for different combinations of background leakage and envelope flexibility show that alleviation of internal and net pressure fluctuations due to these factors by as much as 40 and 15% respectively is possible compared to that for a nominally sealed rigid building of the same internal volume and opening size.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization

  • Wu, Yao;Yao, Daojin;Xiao, Xiaohui
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2493-2503
    • /
    • 2018
  • Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.

Manipulator Joint Friction Identification using Genetic Algorithm and its Experimental Verification (유전 알고리듬을 이용한 매니퓰레이터 조인트의 마찰력 규명 및 실험적 검증)

  • Kim, Gyeong-Ho;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1633-1642
    • /
    • 2000
  • Like many other mechanical dynamic systems, flexible manipulator systems experience stiction or sticking friction, which may cause input-dependent instabilities. Manipulator performance can be enha nced by identifying friction but it is hard and expensive to measure friction by direct and precise sensing of contact displacements and forces. This study addresses the problem of identifying flexible manipulator joint friction. A dynamic model of a two-link flexible manipulator based upon finite element and Lagrange's method is constructed. The dynamic model includes the effects of joint compliances and actuator dynamics. Friction is also incorporated in the dynamic model to account for stick-slip at the joints. Next, the friction parameters are to be determined. The identification problem is posed as an optimization problem to be solved using nonlinear programming methods. A genetic algorithm is used to increase the convergence rate and the chances of finding the global optimum. The identified friction parameters are experimentally verified and it is expected that the identification technique is applicable to a system parameter identification problem associated with a wide class of nonlinear systems.