• 제목/요약/키워드: Flexible contact

검색결과 295건 처리시간 0.028초

Distributed Flexible Tactile Sensor System Using Piezoelectric Film

  • Yoon, Myoung-Jong;Yu, Kee-Ho;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.61.4-61
    • /
    • 2001
  • This research is the development of a distributed flexible tactile sensor for service robots using PVDF (polyvinylidene fluoride) film for the detection of the contact state in real time. The tactile sensor which has 8$\times$8 taxels is fabricated using PVDF film and flexible circuitry. The proposed fabrication method is simple and easy to make the sensor in the laboratory without using any special equipment. Experimental results on static and dynamic properties are obtained. In order to investigate the properties of the sensor, the sensor output to the arbitrary forces and frequencies are measured using the shaker with the force sensor.

  • PDF

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.

롤투롤 시스템에서 플렉시블 소재에 인가된 장력과 분사 높이가 액적 접촉각에 미치는 영향 (The Effect of Tension and Drop Height on Contact Angle of Droplet on Flexible Substrate in Roll-to-Roll Systems)

  • 김동국;이창우
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.167-172
    • /
    • 2017
  • This study proposes a method for identifying correlations between tension and drop height for sessile droplets in a roll-to-roll processing system. The effect of tension and drop height on the contact angle of a sessile droplet is presented. Design of experiment (DOE) methodology and statistical analysis are used to define a correlation between the process parameters. The contact angle is decreased while increasing tension and drop height. The influence of the tension is less significant on the contact angle compared with the effect of the drop height. However, tension should be considered as a major parameter because it is not easy to fix with roll eccentricity and compensating speed of the driven roll. The results of this study show that the effect of tension on the contact angle of a sessile droplet is more important than drop height because the drop height is fixed when the process systems are determined.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Ink Jet Tools for Precision Materials Deposition

  • Creagh, Linda T.;Schoeppler, Martin W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.811-813
    • /
    • 2005
  • Purpose-built ink jet printheads are being recognized as useful tools in manufacturing where precision deposition is required. Ink jet technology is a non-contact, non-contaminating digital process compatible with clean rooms. New manufacturing applications are driving printhead designs to smaller drops, increased productivity. This paper describes Dimatix's new tools designed to facilitate development of manufacturing processes for both rigid and flexible substrates and development of new electronic fluids.

  • PDF

접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발 (Development of Tactile Sensor for Detecting Contact Force and Slip)

  • 최병준;강성철;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

파지 안정성을 강화한 과수 수확용 로봇 그리퍼의 설계 개선 (Improved Design for Enhanced Grip Stability of the Flexible Gripper in Harvesting Robot)

  • 최두순;문선영;황면중
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.107-114
    • /
    • 2020
  • In robotic harvesting, a gripper to manipulate the fruits needs to be attached to the robot system. We proposed a flexible robot gripper that can actively respond to the shape of an object such as fruits in the previous work. However, we found that there is a possibility of not being reliably gripped when the object slides during contact with a finger. In this paper, the improved gripper design is proposed to fundamentally solve the problems of the previous gripper. The position of the finger and the maximum closed position are changed, and the design improvement is performed to increase the grip stability by changing the installation angle of the link portion of the finger. Based on the improved design, a modified gripper is fabricated by 3-D printing, and then gripping experiments are performed on spherical object and fruit model object. It is shown that the gripper can stably grip the objects without excessive bending of the finger link of the gripper. The contact pressure between the finger and the surface of the object is measured, and it is verified that it is a sufficiently small pressure that does not cause damage to the fruit. Therefore, the proposed gripper is expected to be successfully applied in harvesting.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • 정원선;서영교;김홍진;정도현
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

극대면적 UV-NIL 공정에서의 균일 가압 시스템 개발 (The Development of Uniform Pressurizing System for Extremely Large Area UV-NIL)

  • 최원호;신윤혁;여민구;임홍재;신동훈;장시열;정재일;이기성;임시형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1917-1921
    • /
    • 2008
  • Ultraviolet-nanoimprint lithography (UV-NIL) is promising technology for cost effectively defining micro/nano scale structure at room temperature and low pressure. In addition, this technology is fascinating because of it's possibility for high-throughput patterning without complex processes. However, to acquire good micro/nano patterns using this technology, there are some challenges such as uniformity and fidelity of patterns, etc. In this paper, we have focused on uniform contact mechanism and performed contact mechanics analysis. The dimension of the flexible sheet to get adequate uniform contact area has been obtained from contact mechanics simulation. Based on this analysis, we have made a uniform pressurizing device and confirmed its uniform pressurized zone using a pressure sensing paper.

  • PDF

차세대 고속철 해석을 위한 훨레일 모듈 개발 (The development of wheel-rail contact module for the next generation express train)

  • 윤지원;박태원;이수호;조재익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.225-230
    • /
    • 2009
  • From the view point of railway vehicle dynamics, the interaction between wheel and rail have an huge effect on the behavior of the vehicle. This phenomenon is an unique motion, only for railway vehicles. Furthermore, close investigation of the backgrounds of the interaction is the key to estimate the dynamic behavior of the vehicle, successfully. To evaluate the model including flexible bodies such as car body and catenary system of the next generation express train, it is necessary to develop proper dynamic solver including a wheel rail contact module. In this study, wheel-rail contact module is developed using the general purpose dynamic solver. First of all, the procedure for calculation of the wheel-rail contact force has been established. Generally, yaw angle of the wheelset is ignored. Sets of information are summarized as tables and splined for further uses. With this information, normal force and creep coefficient can be extracted and used for FASTSIM algorithm, which has been shown good reliability over years. Normal force and longitudinal, lateral force at the contact surface are also calculated. Those data are verified by commercial railway simulation program 'VAMPIRE'. This procedure and program can offer a basic process for estimation of the dynamic behavior and wear of the wheel-rail system, even while running on the curved rail. Finally, multi-dimensional inspection tool will be developed including the prediction of the derailment.

  • PDF