• Title/Summary/Keyword: Flexible Wall

Search Result 206, Processing Time 0.026 seconds

Development and Evaluation of Technique for Analyzing Laterally Loaded Piles (횡방향력을 받는 말뚝의 해석기법 개발 및 평가)

  • Lee, Seunghyun;Kim, Byoungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.79-84
    • /
    • 2012
  • A technique for analyzing laterally loaded piles was developed in order to accommodate various loading conditions and unique p-y curves obtained from local site. Developed technique was applied to several problems associated with laterally loaded piles to confirm the reliability of the developed technique. And the influences of the parameters considered in the applications on analysis results were investigated. It can be seen that length of the increment of one half of pile diameter is optimum for accuracy of analysis. Problems associated with safe penetration of pile and buckling of a free standing pile were analyzed by the developed technique. Also, analysis results obtained from considering various pile head conditions of a pile which supports retaining wall were compared. The developed technique can be used as a more flexible tool for analyzing laterally loaded piles than commercial program.

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

A Study on the Mannequins for the Display of Hanbok (한복 전시를 위한 마네킹에 관한 연구)

  • Kim, Yeo Kyung;Kim, Jeong Min;Hong, Na Young
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.6
    • /
    • pp.113-126
    • /
    • 2013
  • The purpose of this study is to analyze the current use of mannequins that are designed to display Hanbok and put forward suggestions for improvement. In order to carry out the study, an analysis on the mannequins that are currently in the market was conducted along with a survey with professionals who are in charge of the display. The significance of the study is that it has gathered the opinions of professionals who are currently participating in the displays of Hanbok to lay the foundation for improvements. As Hanbok is a flat-pattern costume unlike the Western ones, the most prominent way to display is to lay them on the floor or hang them on the wall. Nevertheless, the mannequin displays are needed to show the beauty of Hanbok as the silhouette can only be completed when it is put on a body. A new type of mannequins that can portray the distinctive features of Korean beauty more effectively need to be developed. Although the museum and enterprise slightly differ in their preferences and requirements for the mannequins, both agree on the following criteria; the shape should be adjusted: the protruding breasts of the mannequin are not suitable for Hanbok, the body should be disassembled: all parts of the body should be separable and it should be flexible at the joints so that it can produce various poses, the face should represent the "koreaness" and the material should be soft. Based on these findings, we put forth the suggestion that a more suitable mannequin should be developed to portray the beauty of Hanbok.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

Analytical Simulation of the Seismic Response of a High-Rise RC Building Model (고층 철근콘크리트 건축구조모델의 지진응답에 대한 해석적 모사)

  • Lee, Han-Seon;Lee, Jeong-Jae;Jung, Dong-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • A series of shaking table tests were conducted on a 1:12 scale model using scaled Taft N21E earthquake records to investigate the seismic performance of a 17-story high-rise reinforced concrete building structure with a high degree of torsional eccentricity and soft-story irregularities in the bottom two stories. The main characteristics of the behaviors were: (1) a sudden change of the predominant vibration mode from the mode of translation and torsion to the torsional mode after the flexible side underwent a substantial inelastic deformation; (2) an abrupt increase in the torsional stiffness during this change of modes; (3) a warping behavior of the wall in the torsional mode; and (4) a unilateral overturning moment in the transverse direction to the table excitations. In this study, efforts were made to simulate the above characteristics using a nonlinear analysis program, Perform3D. The advantages and limitations are presented with the nonlinear models available in this software, as they are related to the correlation between analysis and test results.

Feasibility Study on Reactive Material in Permeable Reactive Barriers Against Contaminated Groundwater with Ammonium from Unsanitary Landfill (암모늄으로 오염된 비위생 매립지 주변지반의 지하수 정화를 위한 반응벽체내 물질 연구)

  • 이승학;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Batch and column tests were performed to develop the design factors for permeable reactive barriers(PRBs) against the contaminated groundwater with ammonium from unsanitary landfill. Clinoptilolite, one of natural zeolites having excellent cation exchange capacity(CEC), was chosen as the reactive material. In batch test, the reactivity of clinoptilolite to ammonium was examined by varying the initial concentration of ammonium and the particle size of clinoptilolites. One gram of clinoptilolite showed removal efficiency about 80% against the ammonium except in very high initial concentration of 80 ppm, but the effect of particle size of clinoptilolite was not noticeable. Permeability test was performed for the specimens made of clinoptilolite and Jumunjin sand with 20 : 80 weight ratio. Flexible wall permeameter was employed far permeability test. The specimen containing the washed 0.42-0.85mm clinoptilolite showed the highest permeability of about $10^{-3}$/s. In column test, the reactivity of mixed materials against ammonium in flowing condition was examined with the landfill leachate. With the test results, clinoptilolite was found to be a suitable material for PRBs against the contaminated groundwater with ammonium.

A Study on the Methods of the Decorations Using Module Plants in Interior Spaces (모듈형 식물장식을 활용한 실내공간 장식방법에 대한 연구)

  • Lee, Jong-Ran
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.62-69
    • /
    • 2015
  • The purpose of this research is to analyze the methods of the decorations using module plants in interior spaces. This research produced 18 types of the module plant decoration: considering the classifications of module plants(soil, hydroculture, moss), directions of module plants (up, side, down), assembling ways of module plants (horizontal, vertical). Applying these 18 types to the interior space decoration (floor stand, wall attach, ceiling hanging), 54 types were classified. After that, 150 cases of the decoration using module plants in interior spaces were collected and analyzed. In result, the cases were belong to 25 types of 54 types. The important types were the types to be able to decorate wide area of walls or ceilings without occupying floor area: SOIL-UP-VERTICAL, HYDROCULTURE-UP-VERTICAL, MOSS-SIDE-VERTICAL. These types were the decorations with function of bio-filter for air cleaning. Special types were SOIL-SIDE-HORIZONTAL, SOIL-SIDE-VERTICAL with soil developed not to pour and SOIL-DOWN-HORIZONTAL, SOIL-DOWN-VERTICAL with lucks not to pour soil. Plants will be used widely in interior design because of the awareness of eco-friendly design. The strength that module plants are portable, changable, able to exchange parts helps users to maintain plants in interior spaces. For designers, module plants are flexible materials in order to make variety of forms to adjust to interior spaces. The results of this research about methods of the decorations using module plants in interior spaces are useful to designers who want to design interior spaces eco-friendly and user-friendly.

Designing an innovative support system in loess tunnel

  • Wang, Zhichao;Xie, Yuan;Lai, Jinxing;Xie, Yongli;Su, Xulin;Shi, Yufeng;Guo, Chunxia
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.

Analysis on the Types of Benefits of Gardens in Urban Areas: Comparison of Korea and Overseas Cases

  • Park, Jiwon;Jeong, Miae
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.667-681
    • /
    • 2020
  • Background and objective: Recently, there has been an increasing need for relaxation and familiarity with nature in residential and living spaces faced daily by urban residents, leading to a growing social interest in urban gardens. The aim of this study was to determine how gardens in a city provide physical and social benefits, comparing cases in Korea and overseas. Methods: We used the keywords "garden" and "city" for Korea, and "urban," "garden," and "green" for overseas. We then determined the Korean and overseas research trends in urban gardens by analyzing 63 Korean and 90 overseas articles deemed suitable for this study. Results: As to the types of urban gardens, the most significant type was community gardens, both in Korea and overseas (30.2% and 48.6%, respectively), followed by rooftop gardens in Korea (22.2%) and kitchen gardens overseas (22.2%). Due to the narrow and complex urban structure in Korea, people focus on using rooftop, wall, and alley spaces, and tend to arrange container-type flexible gardens. Overseas there has been a focus on promoting health and reducing food inequality through allotment and kitchen gardens, and a tendency to use a larger area as a fixed form than Korea. In addition, it was found that gardens in urban areas had a positive effect on urban biodiversity. Conclusion: To sum up, gardens in Korea are close to living spaces, and gardens overseas influence the ecosystem with an emphasis on food production. Therefore, creating urban gardens is a method of urban regeneration with a high utility that goes beyond mere food production, both in Korea and overseas, providing comprehensive benefits for the environment (37.73%) and society (62.27%). As such, continuous research on this area of study is needed to create policy guidelines for Korea.