• 제목/요약/키워드: Flexible Vertical

검색결과 237건 처리시간 0.025초

원심모형실험을 통한 원형 수직구 굴착 중 발생하는 지반 변형 평가 (Evaluation of Ground Deformation during Excavation of Vertical Shaft through Centrifuge Model Test)

  • 김준영
    • 한국지반공학회논문집
    • /
    • 제38권1호
    • /
    • pp.35-45
    • /
    • 2022
  • 개착공법으로 원형 수직구 건설 시, 가시설 흙막이 벽체는 일정 수준의 변위를 허용하는 연성벽체로 설계된다. 합리적이고 경제적인 연성벽체의 구조 설계를 위해서는 벽체에 작용하는 토압을 정확히 평가할 필요가 있다. 원형 수직구 벽체에 작용하는 토압은 주변 지반의 소성 변형과 밀접하게 연관되어 있으나, 이에 대한 연구는 부족한 상황이다. 본 연구는 원형 수직구의 단계 굴착을 원심모형시험을 통해 모사하고, 원심모형시험 중 촬영된 이미지에 이미지 해석 기법을 적용하여 원형 수직구 굴착 시 주변 지반에 발생하는 변형을 평가하였다.

Submerged Horizontal and Vertical Membrane Wave Barrier

  • Kee S.T.
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.1-11
    • /
    • 2005
  • In the present paper, the hydrodynamic properties of a Rahmen type flexible porous breakwater with dual fixed pontoon system interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at the side edges of dual fixed pontoons, and a submerged horizontal membrane that both ends are hinged at the steel frames mounted pontoons. The dual vertical membranes are extended downward and hinged at bottom steal frame fixed into seabed. The wave blocking and dissipation mechanism and its effects of permeability, Rahmen type membrane and pontoon geometry, pretensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구 (A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane)

  • 김종대;오석형;김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

Dynamics of Track/Wheel Systems on High-Speed Vehicles

  • Kato Isamu;Terumichi Yoshiaki;Adachi Masahito;Sogabe Kiyoshi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.328-335
    • /
    • 2005
  • For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is very important to deal with the complex phenomena of high-speed vehicles that can be occurred in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid body and flexible body. The simulation technique for the complex problems is also discussed. We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical vibration of the system.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.

지중매설 연성관의 관강성 추정 (Pipe Stiffness Prediction of Buried Flexible Pipes)

  • 박준석;김선희;김응호
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.13-20
    • /
    • 2012
  • In this paper, we present the result of an investigation pertaining to the pipe stiffness of buried flexible pipes. Pipe stiffness (PS) formula for the parallel plate loading condition is derived based on the elasticity theory. Vertical and horizontal displacements are also derived. Vertical deflection is always larger than the horizontal deflection because some of energy due to overburden load is stored in the pipe but the difference is negligibly small. In the study, mechanical properties of the flexible pipes produced in the domestic manufacturer are tested and the results are reported in this paper. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is less than 14% although there are significant variations in the mechanical properties of the pipe material. Therefore, it was found that the finite element analysis can be used to predict the pipe stiffness instead of conducting parallel plate loading test.

구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구 (A Study on End-effector Friction of Constrained Spatial Flexible Manipulator)

  • 김진수
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

심해저 광물자원 채광시스템의 통합거동 해석 (Total Dynamic Analysis of Deep-Seabed Integrated Mining System)

  • 김형우;홍섭;최종수;여태경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF