• 제목/요약/키워드: Flexible Pipe

Search Result 125, Processing Time 0.025 seconds

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.