• 제목/요약/키워드: Flexible Loading

검색결과 220건 처리시간 0.031초

Torsional Vibration Control of a Rotating Chamber Shaft System Using Electrorheological Fluid (ER 유체를 이용한 회전식 약실 축계의 비틀림 진동 제어)

  • Lim, Seung-Chul;Kim, Ki-Kap;Kil, Seong-Jin;Shim, Jeong-Soo;Cha, Ki-Up
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권1호
    • /
    • pp.17-24
    • /
    • 2011
  • It is reported that an intermittently rotating chamber system will improve the ratio of firepower to armament space in the case of mid-calibre automatic guns. However, the parallel index, which is a main component of the system, tends to be torsionally flexible due to the low lateral stiffness of cam followers on the index turret. This may cause the shaft system connecting the turret with the chamber prone to considerable residual torsional vibration so that serious misalignment problems occur during ammunition loading and firing processes. Herein, an electrorhelogical (ER) fluid actuator that can suppress such vibrations and the associated semiactive control algorithm are proposed. By mathematical modeling and computer simulations, the performance of the entire system is proved satisfactory.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제44권5호
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior (비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구)

  • Kim, Euiyoung;Chang, Seongmin;Lee, Dongho;Cho, Maenghyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제40권11호
    • /
    • pp.957-962
    • /
    • 2012
  • Fluid/structure interaction (FSI) analysis is necessary to predict the response of a system in which aerodynamic pressure causes deformation of the structure, and vice versa. In dealing with a nonlinear behavior of the structure, however, a simple iterative algorithm of aerodynamic analysis with structural analysis yields no accurate results since aerodynamic pressure need to be changed in accordance with the deformation of structures. In this study, we explore an efficient and accurate method for integrating FSI analysis into structural nonlinear systems. During the course of nonlinear structural analysis, loading conditions are periodically updated by aerodynamic analysis. The accuracy and efficiency of the method is demonstrated with a high-aspect-ratio flexible wing of Global Hawk.

Modal Properties of a Tall Reinforced Concrete Building Based on the Field Measurement and Analytical Models (실측 및 해석모델에 의한 철근콘크리트조 주상복합건물의 모드특성)

  • Kim, Ji-Young;Kim, Ju-Yeon;Kim, Mi-Jin;Yu, Eun-Jong;Kim, Dae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제22권3호
    • /
    • pp.289-296
    • /
    • 2009
  • Natural frequency is a key parameter to determine the seismic and wind loading of tall flexible structures, and to assess the wind-induced vibration for serviceability check. In this study, natural frequencies and associated mode shapes were obtained from measured acceleration data and system identification technique. Subsequently, finite element(FE) models for a tall reinforced concrete buildings were built using a popular PC-based finite element analysis program and calibrated to match their natural frequencies and mode shapes to actual values. The calibration of the FE model included: 1) compensation of modulus of elasticity considering the mix design strength, 2) flexural stiffness of floor slabs, and 3) major non-structural components such as plain concrete walls. Natural frequencies and mode shapes from the final FE model showed best agreement with the measured values.

Development and Evaluation of Technique for Analyzing Laterally Loaded Piles (횡방향력을 받는 말뚝의 해석기법 개발 및 평가)

  • Lee, Seunghyun;Kim, Byoungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권2C호
    • /
    • pp.79-84
    • /
    • 2012
  • A technique for analyzing laterally loaded piles was developed in order to accommodate various loading conditions and unique p-y curves obtained from local site. Developed technique was applied to several problems associated with laterally loaded piles to confirm the reliability of the developed technique. And the influences of the parameters considered in the applications on analysis results were investigated. It can be seen that length of the increment of one half of pile diameter is optimum for accuracy of analysis. Problems associated with safe penetration of pile and buckling of a free standing pile were analyzed by the developed technique. Also, analysis results obtained from considering various pile head conditions of a pile which supports retaining wall were compared. The developed technique can be used as a more flexible tool for analyzing laterally loaded piles than commercial program.

Application of Equivalent Walking Loads for Vibration Analysis of Building Floor Subjected to Footstep Loadings (보행하중을 받는 건축물 바닥판의 진동해석을 위한 등가 보행하중의 적용)

  • 김기철;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제5권5호
    • /
    • pp.35-45
    • /
    • 2001
  • Recently, the floor systems those require large open space may have low inherent damping due to the decline of the use of curtain walls. Furthermore, the use of the high strength materials has resulted in more flexible and longer spanning in floor systems. The long span structures such as shopping malls, offices and large assembly rooms may lead to significant dynamic response due to human activities. Excessive vibrations make the occupants uncomfortable and deteriorate the serviceability of buildings. It is now proved that footfall loading is the major source of floor vibrations. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict measured walking loads and periodic function at a node. But this method could not account for the moving effect of walking. In this study, natural frequency and damping ratio of example structure are evaluated by heel drop tests. And the application of equivalent walking loads is used for on efficient vibration analysis of the plate structures subjected to walking loads.

  • PDF

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • 제19권4호
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.