• Title/Summary/Keyword: Flexible Bearing

Search Result 165, Processing Time 0.021 seconds

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. The method using flexible springs seems to be useful fur the practical design since its simplified model can represent the complex behaviors of pile groups efficiently. Parameter studies were performed far various pile group arrangements, pile spacings, end bearing conditions, and loading stages to analyze their effects on the lateral displacements, maximum pile bending stresses, and lateral stiffness of pile groups. Through the parameter studies, it was found that when lateral stiffness of pile groups was estimated by using three-dimensional analysis method (YSGroup), its complex behavior could be predicted better than other methods based on single pile analysis.

A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker (스트레인 게이지를 이용한 5만 DWT급 석유화학제품운반선의 베어링 반력 및 선체변형량 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • In modern ships, the shafting system often becomes stiff owing to the high engine power, whereas the hull structure becomes more flexible owing to optimization using high-tensile-strength thick steel plates; therefore, more sophisticated shaft alignments are required. In this study, strain gauge-based measurement was conducted under five vessel operating conditions and bearing reaction forces and hull deflections affecting shaft alignment were analyzed for a 50,000 dead weight tonnage oil/chemical tanker that has gained repute as an eco-friendly vessel in recent years. Furthermore, the analytical results from each technique-theoretical calculation, jacking ups, and strain gauges-were cross-checked against each other in order to enhance the degree of accuracy and reliability of the calculation.

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil (사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석)

  • Song, Su-Min;Shin, Jong-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.5-16
    • /
    • 2023
  • The effect of raft flexibility on piled raft foundations in sandy soil was investigated using a numerical analysis and an analytical study. The investigation's emphasis was the load sharing between piles and raft following the raft rigidity (KR), end-bearing conditions. The case of individual piles and subsequently the response of groups of piles was analyzed using a 3D FEM. This study shows that the αpr, load-sharing ratio of piled raft foundations, decreases as the vertical loading increases and as the KR decreases. This tendency is more obvious when using friction piles compared to using end-bearing piles. The effect of raft rigidity is found to be more significant for the axial force distribution - each pile within the foundations has almost similar axial forces of the pile head with a flexible raft; however, each pile has different values with rigid rafts, especially with the end-bearing piles. The axial force of the pile base with floating piles shows similar point-bearing resistance for all the piles; however, it shows different values with end-bearing piles. The differential settlement ratio of rafts showed a larger value with lower KR.

A Study on Optimal Design Factors of Frictional bearing for Isolated Bridges (교량의 마찰형 지진격리장치 최적 인자 결정에 관한 연구)

  • 고현무;박관순;김동석;송현섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.451-458
    • /
    • 2002
  • To secure structures from strong earthquakes occurred recently and design economically seismic isolation design is spread rapidly. Specially, frictional isolator has superiority in application to bridge because it has many advantages. however, because isolator lies between pier and girder, responses of pier and superstructure contradict each other and we need to control the two responses to minimize the bridge's failure probability. In this study, frictional coefficient and horizontal stiffness is defined as design parameters of frictional isolator. the optimal design parameters of frictional isolator to minimize the bridge's failure probability are presented according to strength of earthquake and soil conditions. The result says that optimal friction coefficient is higher as the strength of earthquake is increased. And it is also higher as the soils are more flexible. But, optimal horizontal stiffness of rubber spring is insensitive to strength of earthquake and soil condition.

  • PDF

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.